944 resultados para sprinkler irrigation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

现代化的灌溉用水管理是实现农业高效用水的重要措施之一,它可实现灌溉水资源的合理配置和灌溉系统的优化调度,达到节水增产目的,使有限的水资源获得最大的效益。采用手工方式进行灌溉用水管理,难以及时提供水资源利用最优化方案,因此急需研制出具有网络通信功能的可视化操作界面的灌溉信息管理系统,为灌区水资源评价和利用、规划等工作奠定良好的数据基础。GIS不仅具有强大的空间数据管理功能,还具有丰富的多元地学数据分析处理能力和直观的图形显示效果,因此利用GIS进行灌区的管理与建设将会有效提高灌区的工作效率和经济效益。笔者在实践调研的基础上,根据灌溉信息管理系统的功能规划及结构设计,利用MapX组件工具开发了陕西省冯家山灌区灌溉信息系统,对提高灌溉用水的管理效率进行了实例尝试,并着重对下列关键技术的运用进行了实践与思考:(1)阐述了利用可视化编程工具结合数据库管理技术、地理信息系统组件技术、网络通信技术等进行系统开发的过程;(2)着重介绍了基于MapX组件的空间数据库的建立与关联技术、灌溉管理信息的网络通信实现技术;(3)最后对在灌溉管理工作中运用GIS技术进行科学管理等相关问题进行了有益的探讨。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

利用田间小区试验研究了不同灌水对冬小麦旗叶光合功能衰退的影响。研究表明 :小麦旗叶光合衰退初期引起光合下降的原因主要是气孔限制 ,后期则为非气孔限制。灌水可提高旗叶光合速率 ,并使由气孔限制向非气孔转变的时间推后 ,同时 ,还可增加叶绿素含量 ,增强根活力 ,使小麦旗叶光合功能持续期延长。过量灌水改善旗叶光合衰退的效果主要表现在后期 ,对产量提高的意义并不大。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

滴灌条件下的水盐运移特性是寻求开发利用盐碱地和次生盐碱化防治的基础 ,国内外学者对此进行大量研究。在国内外研究成果的基础上 ,综述了滴灌点源入渗影响因素、入渗模型特性、水分分布特征、湿润体浸润形状、湿润锋运移、盐分运移的规律 ,为滴灌点源水盐运移的研究提供依据。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

在试验室内 ,进行了地下滴灌埋管深度对不同生育时期冬小麦根系生长和地上部分生长影响的试验研究。结果表明 :2 0 cm和 4 0 cm埋管深度的水分分布特征 ,在生育早期抑制地上部分营养生长 ,促进冬小麦蹲苗 ;而中后期则促进生殖生长 ,产量和水分利用效率较高。不考虑犁底层影响时 ,在重壤土上 4 0 cm是冬小麦进行地下滴灌的较好埋深

Relevância:

10.00% 10.00%

Publicador:

Resumo:

旱地作物需水量预报决策辅助系统是利用人工智能技术 ,在 Penman公式的基础上结合现有西北旱区的农学知识、模型以及经验进行系统集成而建立的智能化计算机软件系统 ,该系统是西北地区节水农业专家系统的一个子系统。在生产实践中可为陕西关中地区的冬小麦、夏玉米的栽培作出灌溉方案的决策咨询。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以传统耕作栽培方式为对照,研究了5种保墒灌溉栽培方式下冬小麦产量构成的差异,并对冬小麦灌浆期旗叶叶绿素含量、MDA含量、SOD含量、水分利用效率进行了研究。结果显示:不同保墒灌溉栽培方式对冬小麦均有增产作用,平均增产13.46%,穗长平均增加7.15%,不孕小穗数平均降低21.78%,结实小穗平均增加11.42%,穗粒数平均增加10.82%,千粒重平均增加11.05%。保墒灌溉栽培方式的冬小麦灌浆期旗叶叶绿素含量降低减缓,MDA含量降低、SOD含量增高,水分利用效率平均提高24.03%。结果表明,以免耕留茬方式增产幅度最大,水分利用效率最高。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Land-use change is an important aspect of global environment change. It is, in a sense, the direct result of human activities influencing our physical environment. Supported by the dynamic serving system of national resources, including both the environment database and GIS technology, this paper analyzed the land-use change in northeastern China in the past ten years (1990 - 2000). It divides northeastern China into five land-use zones based on the dynamic degree (DD) of land-use: woodland/grassland - arable land conversion zone, dry land - paddy field conversion zone, urban expansion zone, interlocked zone of farming and pasturing, and reclamation and abandoned zone. In the past ten years, land-use change of northeastern China can be generalized as follows: increase of cropland area was obvious, paddy field and dry land increased by 74. 9 and 276. 0 thousand ha respectively; urban area expanded rapidly, area of town and rural residence increased by 76. 8 thousand ha; area of forest and grassland decreased sharply with the amount of 1399. 0 and 1521. 3 thousand ha respectively; area of water body and unused land increased by 148. 4 and 513. 9 thousand ha respectively. Besides a comprehensive analysis of the spatial patterns of land use, this paper also discusses the driving forces in each land-use dynamic zones. The study shows that some key biophysical factors affect conspicuously the conversion of different land- use types. In this paper, the relationships between land- use conversion and DEM, accnmlated temperature(>= 10 degrees C) and precipitation were analysed and represented. We conclude that the land- use changes in northeast China resulted from the change of macro social and economic factors and local physical elements. Rapid population growth and management changes, in some sense, can explain the shaping of woodland/grassland - cropland conversion zone. The conversion from dry land to paddy field in the dry land - paddy field conversion zone, apart from the physical elements change promoting the expansion of paddy field, results from two reasons: one is that the implementation of market-economy in China has given farmers the right to decide what they plant and how they plant their crops, the other factor is originated partially from the change of dietary habit with the social and economic development. The conversion from paddy field to dry land is caused primarily by the shortfall of irrigation water, which in turn is caused by poor water allocation managed by local governments. The shaping of the reclamation and abandoned zone is partially due to the lack of environment protection consciousness among pioneer settlers. The reason for the conversion from grassland to cropland is the relatively higher profits of fanning than that of pasturing in the interlocked zone of farming and pasturing. In northeastern China, the rapid expansion of built-up areas results from two factors: the first is its small number of towns; the second comes from the huge potential for expansion of existing towns and cities. It is noticeable that urban expansion in the northeastern China is characterized by gentle topographic relief and low population density. Physiognomy, transportation and economy exert great influences on the urban expansion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sustainable water use is seriously compromised in the North China Plain (NCP) due to the huge water requirements of agriculture, the largest use of water resources. An integrated approach which combines the ecosystem model with emergy analysis is presented to determine the optimum quantity of irrigation for sustainable development in irrigated cropping systems. Since the traditional emergy method pays little attention to the dynamic interaction among components of the ecological system and dynamic emergy accounting is in its infancy, it is hard to evaluate the cropping system in hypothetical situations or in response to specific changes. In order to solve this problem, an ecosystem model (Vegetation Interface Processes (VIP) model) is introduced for emergy analysis to describe the production processes. Some raw data, collected by investigating or observing in conventional emergy analysis, may be calculated by the VIP model in the new approach. To demonstrate the advantage of this new approach, we use it to assess the wheat-maize rotation cropping system at different irrigation levels and derive the optimum quantity of irrigation according to the index of ecosystem sustainable development in NCP. The results show, the optimum quantity of irrigation in this region should be 240-330 mm per year in the wheat system and no irrigation in the maize system, because with this quantity of irrigation the rotation crop system reveals: best efficiency in energy transformation (transformity = 6.05E + 4 sej/J); highest sustainability (renewability = 25%); lowest environmental impact (environmental loading ratio = 3.5) and the greatest sustainability index (Emergy Sustainability Index = 0.47) compared with the system in other irrigation amounts. This study demonstrates that application of the new approach is broader than the conventional emergy analysis and the new approach is helpful in optimizing resources allocation, resource-savings and maintaining agricultural sustainability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A probabilistic soil moisture dynamic model is used to estimate the soil moisture probability distribution and plant water stress of irrigated cropland in the North China Plain. Soil moisture and meteorological data during the period of 1998 to 2003 were obtained from an irrigated cropland ecosystem with winter wheat and maize in the North China Plain to test the probabilistic soil moisture dynamic model. Results showed that the model was able to capture the soil moisture dynamics and estimate long-term water balance reasonably well when little soil water deficit existed. The prediction of mean plant water stress during winter wheat and maize growing season quantified the suitability of the wheat-maize rotation to the soil and climate environmental conditions in North China Plain under the impact of irrigation. Under the impact of precipitation fluctuations, there is no significant bimodality of the average soil moisture probability density function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For maximizing the effective applications of remote sensing in crop recognition, crop performance assessment and canopy variables estimation at large areas, it is essential to fully understand the spectral response of canopy to crop development and varying growing conditions. In this paper, the spectral properties of winter wheat canopy under different growth stages and different agronomic conditions were investigated at the field level based on reflectance measurements. It was proved that crop growth and development, nitrogen fertilization rates, nutrient deficit (e.g. lacking any kind of nitrogen, phosphorus and kalium fertilizer or lacking all of them), irrigation frequency and plant density had direct influence on canopy reflectance in 400-900 nm which including the visible/near infrared bands, and resulted in great changes of spectral curves. It was suggested that spectral reflectance of crop canopy can well reflect the growth and development of crop and the impacts from various factors, and was feasible to provide vital information for crop monitoring and assessment. ©2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on field survey, laboratory testing and numerical modeling, engineering characteristics of undisturbed loess and the mechanism of long-runout loess landslides caused by underground water level rise, as well as the formation conditions and spatial distribution of landslides, are systematically studied and analyzed. Loess landslides at south Plateau of Jingyang County are mainly classified as flowslide, slide and fall. Flowslide is the main type characteristic of high velocity, long runout and multi-stages. The steep relief composed of loose structured loess-old aged soil serials and the rise of groundwater table are the predominant conditions for landslides in the study area. To study loess mechanic poperties and loess landslides mechanisims, isotropically and anisotropically consolidated undrained compression(ICU and ACU) tests and constant-deviator-drained compression (CQD) tests were carried out on undisturbed samples. The results of undrained compression tests performed at the in-situ stress level show that the soils are of consistently strain-softening in the stress-strain relations and cause high excess pore pressure. The steady-state line and the potential region of instability are obtained from ICU and ACU test results. A necessary condition for liquefaction is that the soil state initially lies in or is brought into the potential instability region. In addition, a strong strain-softening model is also formed. CQD tests demonstrate that the mobilized friction angle is far less than the steady-state angle and that the soil experiences undrained contractive failure suddenly at very small strains when its stress path during drained loading tries to cross the potential instability region,thus validates the proposed instability region. Based on the location of the region of potential instability and the stress state of slope soil, a method of static liquefaction analysis is proposed for loess landslides caused by rise in groundwater table. Compared with other liquefaction analysis methods, this method overcomes the limitations inherent in conventional slope stability method and undrained brittleness index method. Triaxial tests composed of constant water content (CW) and wetting tests at constant deviator stress are performed on undisturbed unsaturated samples. The stress-strain relation of CW tests takes on strain-hardening behavior; The results of wetting tests at constant deviator stress designed to study the mechanics of failure of unsaturated loess caused by an increase in the degree of saturation (wetting) shows that a contractive failure occurs in the undisturbed samples. On the basis of the above triaxial test results, the initiation of static liquefaction is presented for long-runout loess landslides caused by rise in groundwater table, that is, the loess slope soil gradually transfer from unsaturated to saturated state under the infiltration of irrigation. A contractive failure occurs in the local region at very small strain by increasing the pore-water pressure at constant deviator stresses under drained conditons. It is the contractive failrue resulting from rise of pore pressure that leads to high excess pore pressure in the neighbour soil which reduces shear resistance of soil. The neighbour soils also fail due to the rapid increase in pore-water pressure. Thus a connected failure surface is developed quickly and a flowslide occurs. Based on the saturated-unsaturated seepage theory, transient seepage is computed using the finite element method on loess slope under groundwater table rise. Pore-water pressure distribution for every time step after irrigation are obtained. The phreatic surface in the slope increases with the groundwater table. Pore-water pressure distribution within 8m above the phreatic surface changes very quickly,but the water content and pore water pressure in the region ranging from 8m above the phreatic surface up to ground surface is almost not affected and the matric suction usually is kept at 100~120 kPa. Based on the results of laboratory tests and seepage flow analysis, the development process of loess landslide is modeled considering groundwater table rise. The shearing plastic zone first occurs at the slope toe where the soil is soaked for long term during rise in groundwater table. As irrigation continues, the shearing plastic zone gradually extends to the interior soils, with the results that the tensile plastic zone occurs at the slope crown. As time goes on, both the shearing plastic zone and tensile plastic zone continue to extend. Then a connected plastic zone is formed and fowslide occurs. In comparision to laboratory test results, the results of numerical simulation quite well verify the presented mechanism of static liquefaction of long-runout loess landslides caused by rise in groundwater table.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of civilization, one of great marks in the history of human's society development, has been remained one of the hottest topics in the world. Many theories have been put ford to explain its causes and mechanisms. Although more attentions have been paid to its development, the role of environmental change should not be ignored. In this paper, the level of ancient farming productivity was analyzed, the mechanisms and the process of Chinese ancient civilization formation was explored, and some causes why Chinese ancient civilization shows many different features from other 5 ancient civilizations of the world was analyzed. The main results and conclusions are presented as followed. 1. Compared with the productivity level of other five ancient civilizations, the productivity of ancient China characterized by a feature of extensive not intensive cultivation was lower than that of other five ancient civilizations whose agriculture were based on irrigation. 2. The 5 5000 a B.P. cold event may have facilitated the formation of Egypt and Mesopotamian ancient civilizations and also have had an influence on the development of Neolithic culture in China. 3. The 4 000 a B.P. cold event, which may be the coldest period since the Younger Dryas cold event and signifies the changes from the early Holocene Climate Optimum to late Holocene in many regions of the world, resulted in the great migration of the Indo-European peoples from north Europe to other part of the World and the collapses of ancient civilizations in Egypt, Indus and the Mesopotamian and the collapse of five Neolithic cultures around central China. More important than that is the emergence of Chinese civilization during the same period. Many theories have been put ford to explain why it was in Zhongyuan area not other places whose Neolithic cultures seem more advanced that gave rise to civilization. For now no theory could explain it satisfiedly. Archaeological evidence clearly demonstrate that war was prevailed the whole China especially during the late Longshan culture period, so it seemed war has played a very important role in the emergence of China ancient civilization. Carneiro sees two conditions as essential to the formation of complex societies in concert with warfare, i.e. population growth and environmental circumscription. It was generally through that China couldn't evolved into the environmental circumscription and population pressure because China has extensive areas to live, but that depends on situations. The environmental circumscription area was formed due to the 4000a B.P. cold event and companied flooding disasters, while the population pressure is formed due to three factors; 1) population grow rapidly because of the suitable environment provided by the Holocene Optimum and thus laid its foundations for the ancient human population; 2) population pressure is also related to the primitive agricultural level characterized by extensive not intensive cultivation; 3) population pressure was mainly related to the great migrations of people to the same areas; 4) population pressure was also related to productivity decrease due to the 4 000a B.P. cold event. 4. When population pressure is formed, war is the most possible way to solve the intensions between population and the limited cultivated land and then resulted in the formation of civilization. In this way the climate change during the 4 000a B.P. cold event may have facilitated the emergence of Chinese ancient civilization. Their detailed relations could also be further understood in this way: The first birth places of China ancient civilization could be in Changjiang areas or (and) Daihai area, Shandong province rather than in central China and the emergence time of ancient civilization formed in central China should be delayed if the 4 000a B.P. cold event and companied flooding disasters didn't occurred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A determinação quantitativa do momento da irrigação continua sendo um desafio após o desenvolvimento e teste de tantos métodos fundamentados em propriedades do solo e da planta. Possivelmente haja conhecimento científico adequado, porém, ainda há carência de tecnologia prática e confiável para a tomada de tal decisão. Dentre as propriedades que podem ser utilizadas para estimar a tensão de água crítica está a pressão de ar mínima para causar o borbulhamento através de uma cápsula porosa imersa em água. Neste trabalho, descreve-se como a desidratação de cápsulas porosas com pressão de borbulhamento apropriada serve para determinar o momento de irrigar. Estes procedimentos simples e quantitativos, aparentemente, não tem sido usado para o controle e para automação da irrigação.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1984