893 resultados para sickness absence
Resumo:
In the last few decades, the focus on building healthy communities has grown significantly (Ashton, 2009). There is growing evidence that new approaches to planning are required to address the challenges faced by contemporary communities. These approaches need to be based on timely access to local information and collaborative planning processes (Murray, 2006; Scotch & Parmanto, 2006; Ashton, 2009; Kazda et al., 2009). However, there is little research to inform the methods that can support this type of responsive, local, collaborative and consultative health planning (Northridge et al., 2003). Some research justifies the use of decision support systems (DSS) as a tool to support planning for healthy communities. DSS have been found to increase collaboration between stakeholders and communities, improve the accuracy and quality of the decision-making process, and improve the availability of data and information for health decision-makers (Nobre et al., 1997; Cromley & McLafferty, 2002; Waring et al., 2005). Geographic information systems (GIS) have been suggested as an innovative method by which to implement DSS because they promote new ways of thinking about evidence and facilitate a broader understanding of communities. Furthermore, literature has indicated that online environments can have a positive impact on decision-making by enabling access to information by a broader audience (Kingston et al., 2001). However, only limited research has examined the implementation and impact of online DSS in the health planning field. Previous studies have emphasised the lack of effective information management systems and an absence of frameworks to guide the way in which information is used to promote informed decisions in health planning. It has become imperative to develop innovative approaches, frameworks and methods to support health planning. Thus, to address these identified gaps in the knowledge, this study aims to develop a conceptual planning framework for creating healthy communities and examine the impact of DSS in the Logan Beaudesert area. Specifically, the study aims to identify the key elements and domains of information that are needed to develop healthy communities, to develop a conceptual planning framework for creating healthy communities, to collaboratively develop and implement an online GIS-based Health DSS (i.e., HDSS), and to examine the impact of the HDSS on local decision-making processes. The study is based on a real-world case study of a community-based initiative that was established to improve public health outcomes and promote new ways of addressing chronic disease. The study involved the development of an online GIS-based health decision support system (HDSS), which was applied in the Logan Beaudesert region of Queensland, Australia. A planning framework was developed to account for the way in which information could be organised to contribute to a healthy community. The decision support system was developed within a unique settings-based initiative Logan Beaudesert Health Coalition (LBHC) designed to plan and improve the health capacity of Logan Beaudesert area in Queensland, Australia. This setting provided a suitable platform to apply a participatory research design to the development and implementation of the HDSS. Therefore, the HDSS was a pilot study examined the impact of this collaborative process, and the subsequent implementation of the HDSS on the way decision-making was perceived across the LBHC. As for the method, based on a systematic literature review, a comprehensive planning framework for creating healthy communities has been developed. This was followed by using a mixed method design, data were collected through both qualitative and quantitative methods. Specifically, data were collected by adopting a participatory action research (PAR) approach (i.e., PAR intervention) that informed the development and conceptualisation of the HDSS. A pre- and post-design was then used to determine the impact of the HDSS on decision-making. The findings of this study revealed a meaningful framework for organising information to guide planning for healthy communities. This conceptual framework provided a comprehensive system within which to organise existing data. The PAR process was useful in engaging stakeholders and decision-making in the development and implementation of the online GIS-based DSS. Through three PAR cycles, this study resulted in heightened awareness of online GIS-based DSS and openness to its implementation. It resulted in the development of a tailored system (i.e., HDSS) that addressed the local information and planning needs of the LBHC. In addition, the implementation of the DSS resulted in improved decision- making and greater satisfaction with decisions within the LBHC. For example, the study illustrated the culture in which decisions were made before and after the PAR intervention and what improvements have been observed after the application of the HDSS. In general, the findings indicated that decision-making processes are not merely informed (consequent of using the HDSS tool), but they also enhance the overall sense of ‗collaboration‘ in the health planning practice. For example, it was found that PAR intervention had a positive impact on the way decisions were made. The study revealed important features of the HDSS development and implementation process that will contribute to future research. Thus, the overall findings suggest that the HDSS is an effective tool, which would play an important role in the future for significantly improving the health planning practice.
Resumo:
The integration of unmanned aircraft into civil airspace is a complex issue. One key question is whether unmanned aircraft can operate just as safely as their manned counterparts. The absence of a human pilot in unmanned aircraft automatically points to a deficiency that is the lack of an inherent see-and-avoid capability. To date, regulators have mandated that an “equivalent level of safety” be demonstrated before UAVs are permitted to routinely operate in civil airspace. This chapter proposes techniques, methods, and hardware integrations that describe a “sense-and-avoid” system designed to address the lack of a see-and-avoid capability in UAVs.
Resumo:
Over the last decade, Ionic Liquids (ILs) have been used for the dissolution and derivatization of isolated cellulose. This ability of ILs is now sought for their application in the selective dissolution of cellulose from lignocellulosic biomass, for the manufacture of cellulosic ethanol. However, there are significant knowledge gaps in the understanding of the chemistry of the interaction of biomass and ILs. While imidazolium ILs have been used successfully to dissolve both isolated crystalline cellulose and components of lignocellulosic biomass, phosphonium ILs have not been sufficiently explored for the use in dissolution of lignocellulosic biomass. This thesis reports on the study of the chemistry of sugarcane bagasse with phosphonium ILs. Qualitative and quantitative measurements of biomass components dissolved in the phosphonium ionic liquids (ILs), trihexyltetradecylphosphonium chloride ([P66614]Cl) and tributylmethylphosphonium methylsulphate ([P4441]MeSO4) are obtained using attenuated total reflectance-Fourier Transform Infra Red (FTIR). Absorption bands related to cellulose, hemicelluloses and lignin dissolution monitored in situ in biomass-IL mixtures indicate lignin dissolution in both ILs and some holocellulose dissolution in the hydrophilic [P4441]MeSO4. The kinetics of lignin dissolution reported here indicate that while dissolution in the hydrophobic IL [P66614]Cl appears to follow an accepted mechanism of acid catalysed β-aryl ether cleavage, dissolution in the hydrophilic IL [P4441]MeSO4 does not appear to follow this mechanism and may not be followed by condensation reactions (initiated by reactive ketones). The quantitative measurement of lignin dissolution in phosphonium ILs based on absorbance at 1510 cm-1 has demonstrated utility and greater precision than the conventional Klason lignin method. The cleavage of lignin β-aryl ether bonds in sugarcane bagasse by the ionic liquid [P66614]Cl, in the presence of catalytic amounts of mineral acid. (ca. 0.4 %). The delignification process of bagasse is studied over a range of temperatures (120 °C to 150 °C) by monitoring the production of β-ketones (indicative of cleavage of β-aryl ethers) using FTIR spectroscopy and by compositional analysis of the undissolved fractions. Maximum delignification is obtained at 150 °C, with 52 % of lignin removed from the original lignin content of bagasse. No delignification is observed in the absence of acid which suggests that the reaction is acid catalysed with the IL solubilising the lignin fragments. The rate of delignification was significantly higher at 150 °C, suggesting that crossing the glass transition temperature of lignin effects greater freedom of rotation about the propanoid carbon-carbon bonds and leads to increased cleavage of β-aryl ethers. An attempt has been made to propose a probable mechanism of delignifcation of bagasse with the phosphonuim IL. All polymeric components of bagasse, a lignocellulosic biomass, dissolve in the hydrophilic ionic liquid (IL) tributylmethylphosphonium methylsulfate ([P4441]MeSO4) with and without a catalytic amount of acid (H2SO4, ca. 0.4 %). The presence of acid significantly increases the extent of dissolution of bagasse in [P4441]MeSO4 (by ca. 2.5 times under conditions used here). The dissolved fractions can be partially recovered by the addition of an antisolvent (water) and are significantly enriched in lignin. Unlike acid catalysed dissolution in the hydrophobic IL tetradecyltrihexylphosphonium chloride there is little evidence of cleavage of β-aryl ether bonds of lignin dissolving in [P4441]MeSO4 (with and without acid), but this mechanism may play some role in the acid catalysed dissolution. The XRD of the undissolved fractions suggests that the IL may selectively dissolve the amorphous cellulose component, leaving behind crystalline material.
Resumo:
In the cancer research field, most in vitro studies still rely on two-dimensional (2D) cultures. However, the trend is rapidly shifting towards using a three-dimensional (3D) culture system. This is because 3D models better recapitulate the microenvironment of cells, and therefore, yield cellular and molecular responses that more accurately describe the pathophysiology of cancer. By adopting technology platforms established by the tissue engineering discipline, it is now possible to grow cancer cells in extracellular matrix (ECM)-like environments and dictate the biophysical and biochemical properties of the matrix. In addition, 3D models can be modified to recapitulate different stages of cancer progression for instance from the initial development of tumor to metastasis. Inevitably, to recapitulate a heterotypic condition, comprising more than one cell type, it requires a more complex 3D model. To date, 3D models that are available for studying the prostate cancer (CaP)-bone interactions are still lacking. Therefore, the aim of this study is to establish a co-culture model that allows investigation of direct and indirect CaP-bone interactions. Prior to that, 3D polyethylene glycol (PEG)-based hydrogel cultures for CaP cells were first developed and growth conditions were optimised. Characterization of the 3D hydrogel cultures show that LNCaP cells form a multicellular mass that resembles avascular tumor. In comparison to 2D cultures, besides the difference in cell morphology, the response of LNCaP cells to the androgen analogue (R1881) stimulation is different compared to the cells in 2D cultures. This discrepancy between 2D and 3D cultures is likely associated with the cell-cell contact, density and ligand-receptor interactions. Following the 3D monoculture study, a 3D direct co-culture model of CaP cells and the human tissue engineered bone (hTEBC) construct was developed. Interactions between the CaP cells and human osteoblasts (hOBs) resulted in elevation of Matrix Metalloproteinase 9 (MMP9) for PC-3 cells and Prostate Specific Antigen (PSA) for LNCaP cells. To further investigate the paracrine interaction of CaP cells and (hOBs), a 3D indirect co-culture model was developed, where LNCaP cells embedded within PEG hydrogels were co-cultured with hTEBC. It was found that the cellular changes observed reflect the early event of CaP colonizing the bone site. In the absence of androgens, interestingly, up-regulation of PSA and other kallikreins is also detected in the co-culture compared to the LNCaP monoculture. This non androgenic stimulation could be triggered by the soluble factors secreted by the hOB such as Interleukin-6. There are also decrease in alkaline phosphatase (ALP) activity and down-regulation of genes of the hOB when co-cultured with LNCaP cells that have not been previously described. These genes include transforming growth factor β1 (TGFβ1), osteocalcin and Vimentin. However, no changes to epithelial markers (e.g E-cadherin, Cytokeratin 8) were observed in both cell types from the co-culture. Some of these intriguing changes observed in the co-cultures that had not been previously described have enriched the basic knowledge of the CaP cell-bone interaction. From this study, we have shown evidence of the feasibility and versatility of our established 3D models. These models can be adapted to test various hypotheses for studies pertaining to underlying mechanisms of bone metastasis and could provide a vehicle for anticancer drug screening purposes in the future.
Resumo:
Many corporations and individuals realize that environmental sustainability is an urgent problem to address. In this chapter, we contribute to the emerging academic discussion by proposing two innovative approaches for engaging in the development of environmentally sustainable business processes. Specifically, we describe an extended process modeling approach for capturing and documenting the dioxide emissions produced during the execution of a business process. For illustration, we apply this approach to the case of a government Shared Service provider. Second, we then introduce an analysis method for measuring the carbon dioxide emissions produced during the execution of a business process. To illustrate this approach, we apply it in the real-life case of a European airport and show how this information can be leveraged in the re-design of "green" business processes.
Resumo:
Spectrum sensing is considered to be one of the most important tasks in cognitive radio. One of the common assumption among current spectrum sensing detectors is the full presence or complete absence of the primary user within the sensing period. In reality, there are many situations where the primary user signal only occupies a portion of the observed signal and the assumption of primary user duty cycle not necessarily fulfilled. In this paper we show that the true detection performance can degrade from the assumed achievable values when the observed primary user exhibits a certain duty cycle. Therefore, a two-stage detection method incorporating primary user duty cycle that enhances the detection performance is proposed. The proposed detector can improve the probability of detection under low duty cycle at the expense of a small decrease in performance at high duty cycle.
Resumo:
Sustainability is an issue for everyone. For instance, the higher education sector is being asked to take an active part in creating a sustainable future, due to their moral responsibility, social obligation, and their own need to adapt to the changing higher education environment. By either signing declarations or making public statements, many universities are expressing their desire to become role models for enhancing sustainability. However, too often they have not delivered as much as they had intended. This is particularly evident in the lack of physical implementation of sustainable practices in the campus environment. Real projects such as green technologies on campus have the potential to rectify the problem in addition to improving building performance. Despite being relatively recent innovations, Green Roof and Living Wall have been widely recognized because of their substantial benefits, such as runoff water reduction, noise insulation, and the promotion of biodiversity. While they can be found in commercial and residential buildings, they only appear infrequently on campuses as universities have been very slow to implement sustainability innovations. There has been very little research examining the fundamental problems from the organizational perspective. To address this deficiency, the researchers designed and carried out 24 semi-structured interviews to investigate the general organizational environment of Australian universities with the intention to identify organizational obstacles to the delivery of Green Roof and Living Wall projects. This research revealed that the organizational environment of Australian universities still has a lot of room to be improved in order to accommodate sustainability practices. Some of the main organizational barriers to the adoption of sustainable innovations were identified including lack of awareness and knowledge, the absence of strong supportive leadership, a weak sustainability-rooted culture and several management challenges. This led to the development of a set of strategies to help optimize the organizational environment for the purpose of better decision making for Green Roof and Living Wall implementation.
Resumo:
Unmanned Aircraft Systems (UAS) describe a diverse range of aircraft that are operated without a human pilot on-board. Unmanned aircraft range from small rotorcraft, which can fit in the palm of your hand, through to fixed wing aircraft comparable in size to that of a commercial passenger jet. The absence of a pilot on-board allows these aircraft to be developed with unique performance capabilities facilitating a wide range of applications in surveillance, environmental management, agriculture, defence, and search and rescue. However, regulations relating to the safe design and operation of UAS first need to be developed before the many potential benefits from these applications can be realised. According to the International Civil Aviation Organization (ICAO), a Risk Management Process (RMP) should support all civil aviation policy and rulemaking activities (ICAO 2009). The RMP is described in International standard, ISO 31000:2009 (ISO, 2009a). This standard is intentionally generic and high-level, providing limited guidance on how it can be effectively applied to complex socio-technical decision problems such as the development of regulations for UAS. Through the application of principles and tools drawn from systems philosophy and systems engineering, this thesis explores how the RMP can be effectively applied to support the development of safety regulations for UAS. A sound systems-theoretic foundation for the RMP is presented in this thesis. Using the case-study scenario of a UAS operation over an inhabited area and through the novel application of principles drawn from general systems modelling philosophy, a consolidated framework of the definitions of the concepts of: safe, risk and hazard is made. The framework is novel in that it facilitates the representation of broader subjective factors in an assessment of the safety of a system; describes the issues associated with the specification of a system-boundary; makes explicit the hierarchical nature of the relationship between the concepts and the subsequent constraints that exist between them; and can be evaluated using a range of analytic or deliberative modelling techniques. Following the general sequence of the RMP, the thesis explores the issues associated with the quantified specification of safety criteria for UAS. A novel risk analysis tool is presented. In contrast to existing risk tools, the analysis tool presented in this thesis quantifiably characterises both the societal and individual risk of UAS operations as a function of the flight path of the aircraft. A novel structuring of the risk evaluation and risk treatment decision processes is then proposed. The structuring is achieved through the application of the Decision Support Problem Technique; a modelling approach that has been previously used to effectively model complex engineering design processes and to support decision-making in relation to airspace design. The final contribution made by this thesis is in the development of an airworthiness regulatory framework for civil UAS. A novel "airworthiness certification matrix" is proposed as a basis for the definition of UAS "Part 21" regulations. The outcome airworthiness certification matrix provides a flexible, systematic and justifiable method for promulgating airworthiness regulations for UAS. In addition, an approach for deriving "Part 1309" regulations for UAS is presented. In contrast to existing approaches, the approach presented in this thesis facilitates a traceable and objective tailoring of system-level reliability requirements across the diverse range of UAS operations. The significance of the research contained in this thesis is clearly demonstrated by its practical real world outcomes. Industry regulatory development groups and the Civil Aviation Safety Authority have endorsed the proposed airworthiness certification matrix. The risk models have also been used to support research undertaken by the Australian Department of Defence. Ultimately, it is hoped that the outcomes from this research will play a significant part in the shaping of regulations for civil UAS, here in Australia and around the world.
Resumo:
The Pomegranate Cycle is a practice-led enquiry consisting of a creative work and an exegesis. This project investigates the potential of self-directed, technologically mediated composition as a means of reconfiguring gender stereotypes within the operatic tradition. This practice confronts two primary stereotypes: the positioning of female performing bodies within narratives of violence and the absence of women from authorial roles that construct and regulate the operatic tradition. The Pomegranate Cycle redresses these stereotypes by presenting a new narrative trajectory of healing for its central character, and by placing the singer inside the role of composer and producer. During the twentieth and early twenty-first century, operatic and classical music institutions have resisted incorporating works of living composers into their repertory. Consequently, the canon’s historic representations of gender remain unchallenged. Historically and contemporarily, men have almost exclusively occupied the roles of composer, conductor, director and critic, and therefore men have regulated the pedagogy, performance practices, repertoire and organisations that sustain classical music. In this landscape, women are singers, and few have the means to challenge the constructions of gender they are asked to reproduce. The Pomegranate Cycle uses recording technologies as the means of driving change because these technologies have already challenged the regulation of the classical tradition by changing people’s modes of accessing, creating and interacting with music. Building on the work of artists including Phillips and van Veen, Robert Ashley and Diamanda Galas, The Pomegranate Cycle seeks to broaden the definition of what opera can be. This work examines the ways in which the operatic tradition can be hybridised with contemporary musical forms such as ambient electronica, glitch, spoken word and concrete sounds as a way of bringing the form into dialogue with contemporary music cultures. The ultilisation of other sound cultures within the context of opera enables women’s voices and stories to be presented in new ways, while also providing a point of friction with opera’s traditional storytelling devices. The Pomegranate Cycle simulates aesthetics associated with Western art music genres by drawing on contemporary recording techniques, virtual instruments and sound-processing plug-ins. Through such simulations, the work disrupts the way virtuosic human craft has been used to generate authenticity and regulate access to the institutions that protect and produce Western art music. The DIY approach to production, recording, composition and performance of The Pomegranate Cycle demonstrates that an opera can be realised by a single person. Access to the broader institutions which regulate the tradition are not necessary. In short, The Pomegranate Cycle establishes that a singer can be more than a voice and a performing body. She can be her own multimedia storyteller. Her audience can be anywhere.
Resumo:
Unmanned Aircraft Systems (UAS) are one of a number of emerging aviation sectors. Such new aviation concepts present a significant challenge to National Aviation Authorities (NAAs) charged with ensuring the safety of their operation within the existing airspace system. There is significant heritage in the existing body of aviation safety regulations for Conventionally Piloted Aircraft (CPA). It can be argued that the promulgation of these regulations has delivered a level of safety tolerable to society, thus justifying the “default position” of applying these same standards, regulations and regulatory structures to emerging aviation concepts such as UAS. An example of this is the proposed “1309” regulation for UAS, which is based on the 1309 regulation for CPA. However, the absence of a pilot on-board an unmanned aircraft creates a fundamentally different risk paradigm to that of CPA. An appreciation of these differences is essential to the justification of the “default position” and in turn, to ensure the development of effective safety standards and regulations for UAS. This paper explores the suitability of the proposed “1309” regulation for UAS. A detailed review of the proposed regulation is provided and a number of key assumptions are identified and discussed. A high-level model characterising the expected number of third party fatalities on the ground is then used to determine the impact of these assumptions. The results clearly show that the “one size fits all” approach to the definition of 1309 regulations for UAS, which mandates equipment design and installation requirements independent of where the UAS is to be operated, will not lead to an effective management of the risks.
Resumo:
Persistent digital hyperthermia, presumably due to vasodilation, occurs during the developmental and acute stages of insulin-induced laminitis. The objectives of this study were to determine if persistent digital hyperthermia is the principal pathogenic mechanism responsible for the development of laminitis. The potent vasodilator, ATP-MgCl 2 was infused continuously into the distal phalanx of the left forefoot of six Standardbred racehorses for 48h via intra-osseous infusion to promote persistent digital hyperthermia. The right forefoot was infused with saline solution and acted as an internal control. Clinical signs of lameness at the walk were not detected at 0h, 24h or 48h post-infusion. Mean±SE hoof wall temperatures of the left forefoot (29.4±0.25°C) were higher (P<0.05) than those on the right (27.5±0.38°C). Serum insulin (15.0±2.89μIU/mL) and blood glucose (5.4±0.22mM) concentrations remained unchanged during the experiment. Histopathological evidence of laminitis was not detected in any horse. The results demonstrated that digital vasodilation up to 30 °C for a period of 48. h does not trigger laminitis in the absence of hyperinsulinaemia. Thus, although digital hyperthermia may play a role in the pathogenesis of laminitis, it is not the sole mechanism involved.
Resumo:
Endocrinopathic laminitis is frequently associated with hyperinsulinaemia but the role of glucose in the pathogenesis of the disease has not been fully investigated. This study aimed to determine the endogenous insulin response to a quantity of glucose equivalent to that administered during a laminitis-inducing, euglycaemic, hyperinsulinaemic clamp, over 48. h in insulin-sensitive Standardbred racehorses. In addition, the study investigated whether glucose infusion, in the absence of exogenous insulin administration, would result in the development of clinical and histopathological evidence of laminitis. Glucose (50% dextrose) was infused intravenously at a rate of 0.68 mL/kg/h for 48. h in treated horses (n = 4) and control horses (n = 3) received a balanced electrolyte solution (0.68 mL/kg/h). Lamellar histology was examined at the conclusion of the experiment. Horses in the treatment group were insulin sensitive (M value 0.039 ± 0.0012. mmol/kg/min and M-to-I ratio (100×) 0.014 ± 0.002) as determined by an approximated hyperglycaemic clamp. Treated horses developed glycosuria, hyperglycaemia (10.7 ± 0.78. mmol/L) and hyperinsulinaemia (208 ± 26.1. μIU/mL), whereas control horses did not. None of the horses became lame as a consequence of the experiment but all of the treated horses developed histopathological evidence of laminitis in at least one foot. Combined with earlier studies, the results showed that laminitis may be induced by either insulin alone or a combination of insulin and glucose, but that it is unlikely to be due to a glucose overload mechanism. Based on the histopathological data, the potential threshold for insulin toxicity (i.e. laminitis) in horses may be at or below a serum concentration of ∼200. μIU/mL.
Resumo:
This article reports on the cleavage of lignin ß-aryl ether bonds in sugarcane bagasse by the ionic liquid (IL) trihexyl tetradecyl phosphonium chloride [P66614] Cl, in the presence of catalytic amounts of mineral acid fca. 0.4%). The deligniflcation process of bagasse was studied over a range of temperatures (120°C to 150°C) by monitoring the production of ß-ketones (indicative of cleavage of ß-aryl ethers) using FTIR spectroscopy and by compositional analysis of the undissolved fractions. Maximum deligniflcation was obtained at 150°C, with 52% of lignin removed from the original lignin content of bagasse. No deligniflcation was observed in the absence of acid, which suggests that the reaction is acid catalyzed with the IL solubilizing the lignin fragments. The rate of deligniflcation was significantly higher at 150°C, suggesting that crossing the glass transition temperature of lignin effects greater freedom of rotation about the propanoid carbon-carbon bonds and leads to increased cleavage of ß-aryl ethers. An attempt has been made to propose a probable mechanism of deligniflcation of bagasse with the phosphonuim IL. © Taylor & Francis Group, LLC.
Resumo:
In contextualising victims' experiences of policing in domestic violence situations in Singapore, two extreme but interrelated sets of responses have been observed. At one end of the continuum, criminal justice sanctions are strictly contingent upon victim willingness to initiate criminal proceedings against the perpetrator, and at the other, victims' rights, needs and preferences seem to be usurped by the justice system regardless of victims' choice. Neither of these positions takes victims' interests into account. Nor do they stem from an understanding of the sociocultural, economic and structural circumstances in which victims experienced violence, and continued to experience it, long after a police intervention. Data from the research revealed that criminalisation as an ideological and legally practical tool was not only rendered ineffective but irrelevant to the experiences of women in the Singaporean context.Two factors account for this phenomenon. First, the absence of support structures to achieve criminalisation and address victims' needs in the aftermath of criminalisation; second, the authoritative, paternalistic and patriarchal state impedes processes aimed at the empowerment of women victims.
Resumo:
Incorporating knowledge based urban development (KBUD) strategies in the urban planning and development process is a challenging and complex task due to the fragmented and incoherent nature of the existing KBUD models. This paper scrutinizes and compares these KBUD models with an aim of identifying key and common features that help in developing a new comprehensive and integrated KBUD model. The features and characteristics of the existing KBUD models are determined through a thorough literature review and the analysis reveals that while these models are invaluable and useful in some cases, lack of a comprehensive perspective and absence of full integration of all necessary development domains render them incomplete as a generic model. The proposed KBUD model considers all central elements of urban development and sets an effective platform for planners and developers to achieve more holistic development outcomes. The proposed model, when developed further, has a high potential to support researchers, practitioners and particularly city and state administrations that are aiming to a knowledge-based development.