965 resultados para sewage sludge burning
Resumo:
This study reports the performance of a combined anaerobic-aerobic packed-bed reactor that can be used to treat domestic sewage. Initially, a bench-scale reactor was operated in three experimental phases. In the first phase, the anaerobic reactor was operated with an average organic matter removal efficiency of 77% for a hydraulic retention time (HRT) of 10 h. In the second phase, the reactor was operated with an anaerobic stage followed by an aerobic zone, resulting in a mean value of 91% efficiency. In the third and final phase, the anaerobic-aerobic reactor was operated with recirculation of the effluent of the reactor through the anaerobic zone. The system yielded mean total nitrogen removal percentages of 65 and 75% for recycle ratios (r) of 0.5 and 1.5, respectively, and the chemical oxygen demand (COD) removal efficiencies were higher than 90%. When the pilot-scale reactor was operated with an HRT of 12 h and r values of 1.5 and 3.0, its performance was similar to that observed in the bench-scale unit (92% COD removal for r = 3.0). However, the nitrogen removal was lower (55% N removal for r = 3.0) due to problems with the hydrodynamics in the aerobic zone. The anaerobic-aerobic fixed-bed reactor with recirculation of the liquid phase allows for concomitant carbon and nitrogen removal without adding an exogenous source of electron donors and without requiring any additional alkalinity supplementation.
Resumo:
The impact of tannery sludge application on soil microbial community and diversity is poorly understood. We studied the microbial community in an agricultural soil following two applications (2006 and 2007) of tannery sludge with annual application rates of 0.0,2.3 and 22.6 Mg ha(-1). The soil was sampled 12 and 271 days after the second (2007) application. Community structure was assessed via a phospholipid fatty acid analysis, and the physiological profile of the soil microbial community via the Biolog method. Tannery sludge application changed soil chemical properties, increasing the soil pH and electrical conductivity as well as available P and mineral N concentrations. The higher sludge application rate changed the community structure and the physiological profile of the microbial community at both sampling dates. However, there is no clear link between community structure and carbon substrate utilization. According to the Distance Based Linear Models Analysis, the fatty acids 16:0 and 117:0 together contributed 84% to the observed PLFA patterns, whereas the chemical properties available P, mineral N, and Ca, and pH together contributed 54%. At 12 days, tannery sludge application increased the average well color development from 0.46 to 0.87 after 48 h, and reduced the time elapsed before reaching the midpoint carbon substrate utilization (s) from 71 to 44 h, an effect still apparent nine months after application of the higher sludge application rate. The dominant signature fatty acids and kinetic parameters (r and s) were correlated to the concentrations of available P. Ca, mineral N, pH and EC. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
In a field experiment performed in Lins County (Sao Paulo State, Brazil), treated sewage effluent (TSE) irrigation increased sugarcane yield but caused an excessive increase in the exchangeable sodium percentage (ESP) and clay dispersion after 16 months due to an intense irrigation regime (2500 mm/16 months) with sodium rich effluents. After two additional complete cycles with lower TSE irrigation rates (1200 mm year(-1)), 1700 kg ha(-1) of phosphogypsum was added to a section of the irrigated plots to evaluate its residence time and its implications on Na+ dynamics and other soil properties. Undisturbed soil cores were taken 2 years after phosphogypsum application to verify soil physical properties up to 0.2 m depth, and disturbed soil samples were taken every year up to 1 m depth for chemical analyses. After 5 years of consecutive TSE irrigation (2005-2010), soil acidity (pH approximate to 5) and basic cations (Ca approximate to 12, Mg approximate to 6 and K approximate to 2 mmol(c) kg(-1)) were maintained in adequate conditions for plant development without the necessity of liming, while acidity was increased (pH approximate to 4.5) and Ca (approximate to 9 mmol(c) kg(-1)), and the Mg (approximate to 4.5 mmol(c) kg(-1)) concentration decreased in the rainfed without phosphogypsum treatment. An increase in water retention capacity at -30 (from 0.14 to 0.17 m(3) m(-3)) and -1500 kPa (from 0.08 to 0.12 m(3) m(-3)) potentials was also observed in all TSE irrigated treatments. The plots with a phosphogypsum treatment showed average increases of 2 mmol(c) kg(-1) of Ca2+ and 7 mg kg(-1) of S-SO42- in all soil profiles and an average reduction of 2 mmol(c) kg(-1) of Na+ up to 0.4 m from 2008 to 2009. However, the extent of the chemical effects was greater after the first year compared to the second year. The high concentration of Na+ found in previous studies performed in the same area returned to low concentrations after continued TSE irrigation at lower rates, even without the phosphogypsum application. An unusual phosphorus migration was observed to the 0.4-0.8 m soil layer as a result of TSE irrigation, most likely due to a high pH and a Na carbonate-dominated TSE. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The main purpose of this study is to perform a nitrogen budget survey for the entire Brazilian Amazon region. The main inputs of nitrogen to the region are biological nitrogen fixation occurring in tropical forests (7.7 Tg. yr(-1)), and biological nitrogen fixation in agricultural lands mainly due to the cultivation of a large area with soybean, which is an important nitrogen-fixing crop (1.68 Tg. yr(-1)). The input due to the use of N fertilizers (0.48 Tg. yr(-1)) is still incipient compared to the other two inputs mentioned above. The major output flux is the riverine flux, equal to 2.80 Tg. yr(-1) and export related to foodstuff, mainly the transport of soybean and beef to other parts of the country. The continuous population growth and high rate of urbanization may pose new threats to the nitrogen cycle of the region through the burning of fossil fuel and dumping of raw domestic sewage in rivers and streams of the region.
Resumo:
Abstract Background To determine the possible genotoxic effect of exposure to the smoke generated by biomass burning on workers involved in manual sugar cane harvesting. Methods The frequency of micronuclei in exfoliated buccal cells and peripheral blood lymphocytes was determined in sugarcane workers in the Barretos region of Brazil, during the harvest season and compared to a control population, comprised of administrative employees of Barretos Cancer Hospital. Results The frequency of micronuclei was higher in the sugar cane workers. The mean frequency in blood lymphocytes (micronuclei/1000 cells) in the test group was 8.22 versus 1.27 in the control group. The same effect was observed when exfoliated buccal cells were considered (22.75 and 9.70 micronuclei/1000 cells for sugar cane workers and controls, respectively). Conclusion Exposure to emissions produced by the burning of sugar cane during harvesting induces genomic instability in workers, indicating the necessity of adopting more advanced techniques of harvesting sugar cane to preserve human health.
Resumo:
The Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA) is a long term (20 years) research effort aimed at the understanding of the functioning of the Amazonian ecosystem. In particular, the strong biosphere-atmosphere interaction is a key component looking at the exchange processes between vegetation and the atmosphere, focusing on aerosol particles. Two aerosol components are the most visible: The natural biogenic emissions of aerosols and VOCs, and the biomass burning emissions. A large effort was done to characterize natural biogenic aerosols that showed detailed organic characterization and optical properties. The biomass burning component in Amazonia is important in term of aerosol and trace gases emissions, with deforestation rates decreasing, from 27,000 Km2 in 2004 to about 5,000 Km2 in 2011. Biomass burning emissions in Amazonia increases concentrations of aerosol particles, CO, ozone and other species, and also change the surface radiation balance in a significant way. Long term monitoring of aerosols and trace gases were performed in two sites: a background site in Central Amazonia, 55 Km North of Manaus (called ZF2 ecological reservation) and a monitoring station in Porto Velho, Rondonia state, a site heavily impacted by biomass burning smoke. Several instruments were operated to measured aerosol size distribution, optical properties (absorption and scattering at several wavelengths), composition of organic (OC/EC) and inorganic components among other measurements. AERONET and MODIS measurements from 5 long term sites show a large year-to year variability due to climatic and socio-economic issues. Aerosol optical depths of more than 4 at 550nm was observed frequently over biomass burning areas. In the pristine Amazonian atmosphere, aerosol scattering coefficients ranged between 1 and 200 Mm-1 at 450 nm, while absorption ranged between 1 and 20 Mm-1 at 637 nm. A strong seasonal behavior was observed, with greater aerosol loadings during the dry season (Jul-Nov) as compared to the wet season (Dec-Jun). During the wet season in Manaus, aerosol scattering (450 nm) and absorption (637 nm) coefficients averaged, respectively, 14 and 0.9 Mm-1. Angstrom exponents for scattering were lower during the wet season (1.6) in comparison to the dry season (1.9), which is consistent with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic aerosols, predominant in the coarse mode. Single scattering albedo, calculated at 637 nm, did not show a significant seasonal variation, averaging 0.86. In Porto Velho, even in the wet season it was possible to observe an impact from anthropogenic aerosol. Black Carbon was measured at a high 20 ug/m³ in the dry season, showing strong aerosol absorption. This work presents a general description of the aerosol optical properties in Amazonia, both during the Amazonian wet and dry seasons.
Resumo:
The Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA) is a long-term (20 years) research effort aimed at the understanding of the functioning of the Amazonian ecosystem. The strong biosphere-atmosphere interaction is a key component of the ecosystem functioning. Two aerosol components are the most visible: The natural biogenic emissions of particles and VOCs, and the biomass burning emissions. Two aerosol and trace gases monitoring stations were operated for 4 years in Manaus and Porto Velho, two very distinct sites, with different land use change. Manaus is a very clean and pristine site and Porto Velho is representative of heavy land use change in Amazonia. Aerosol composition, optical properties, size distribution, vertical profiling and optical depth were measured from 2008 to 2012. Aerosol radiative forcing was calculated over large areas. It was observed that the natural biogenic aerosol has significant absorption properties. Organic aerosol dominates the aerosol mass with 80 to 95%. Light scattering and light absorption shows an increase by factor of 10 from Manaus to Porto Velho. Very few new particle formation events were observed. Strong links between aerosols and VOC emissions were observed. Aerosol radiative forcing in Rondonia shows a high -15 watts/m² during the dry season of 2010, showing the large impacts of aerosol loading in the Amazonian ecosystem. The increase in diffuse radiation changes the forest carbon uptake by 20 to 35%, a large increase in this important ecosystem.
Resumo:
Biomass burning represents one of the largest sources of particulate matter to the atmosphere, which results in a significant perturbation to the Earth’s radiative balance coupled with serious negative impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect of 0.03 Wm-2, however the uncertainty is 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months (usually from August-October). Furthermore, a growing number of people live within the Amazon region, which means that they are subject to the deleterious effects on their health from exposure to substantial volumes of polluted air. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil, are presented here. A suite of instrumentation was flown on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft and was supported by ground based measurements, with extensive measurements made in Porto Velho, Rondonia. The aircraft sampled a range of conditions with sampling of fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate.
Resumo:
O processo MBBR/IFAS, Moving Bed Biofilm Reactor/Integrated Fixed Film Activated Sludge, é uma tecnologia recente para o tratamento de esgoto que incorpora tanto biomassa em suspensão como aderida. Seus parâmetros de controle são os mesmos aplicados ao processo de lodo ativado, observadas algumas especificidades. Como objetivo principal deste trabalho, apresenta-se uma análise comparativa entre os custos de implantação de uma unidade IFAS e de lodo ativado operando sob alta taxa, na faixa convencional e com aeração prolongada, para populações de 50.000 e 500.000 habitantes. Os resultados mostraram que, sob as hipóteses assumidas para a implantação dos reatores, o custo do processo de lodo ativado foi de 36% até 100% do custo do processo IFAS, dependendo da carga orgânica aplicada, do preço do terreno ou do custo do meio suporte.
Resumo:
High aerosol loads are discharged into the atmosphere by biomass burning in Amazon and Central Brazil during the dry season. These particles can interact with clouds as cloud condensation nuclei (CCN) changing cloud microphysics and radiative properties and, thereby, affecting the radiative budget of the region. Furthermore, the biomass burning aerosols can be transported by the low level jet (LLJ) to La Plata Basin where many mesoscale convective systems (MCS) are observed during spring and summer. This work proposes to investigate whether the aerosols from biomass burning may affect the MCS in terms of rainfall over La Plata Basin during spring. Since the aerosol effect is very difficult to isolate because convective clouds are very sensitive to small environment disturbances, detailed analyses using different techniques are used. The binplot, 2D histograms and combined empirical orthogonal function (EOF) methods are used to separate certain environment conditions with the possible effects of aerosol loading. Reanalysis 2, TRMM-3B42 and AERONET data are used from 1999 up to 2012 during September-December. The results show that there are two patterns associated to rainfall-aerosol interaction in La Plata Basin: one in which the dynamic conditions are more important than aerosols to generate rain; and a second one where the aerosol particles have a role in rain formation, acting mainly to suppress rainfall over La Plata Basin.
Resumo:
[EN] Confluence of anthropogenic influences is common in coastal areas (e.g., disposal of different pollutants like industrial and domestic sewage, brine, etc.). In this study we assessed whether the combined disposal of domestic sewage and brine altered patterns in the abundance and assemblage structure of subtidal meiofauna inhabiting sandy seabeds. Samples were collected in May 2008 and January 2009 at varying distances (0, 15, and 30 m) from the discharge point. Meiofaunal abundances were consistently larger at 0 m (1663.05 ± 1076.86 ind 10 cm?2, mean ± standard error) than at 15 m (471.21 ± 307.97 ind 10 cm?2) and 30 m (316.50 ± 256.85 ind 10 cm?2) from the discharge outfall. This pattern was particularly accentuated for nematodes. Proximity to the discharge point also altered patterns in meiofaunal assemblage structure, though temporal shifts in the sedimentary composition also contributed to explain differences in the meiofaunal assemblage structure. As a result, meiofauna may be a reliable tool for monitoring studies of the combined disposal of sewage and brine as long as potential confounding factors (here temporal changes in grain size composition) are considered.
Resumo:
La tecnica di ozonolisi viene applicata ai fanghi biologici derivanti da impianti di depurazione acque reflue urbane, e consiste nell'ottenere, grazie all'ozono, una minor massa fangosa da smaltire e una miglior trattabilità del fango residue. In questo elaborato si prendono in esame le sperimentazioni effettuate a Marina di Ravenna e si estraggono le prime conclusioni gestionali, economiche e ambientali sull'applicabilità del metodo a questo tipo di fango.
Resumo:
Waste management is becoming, year after year, always more important both for the costs associated with it and for the ever increasing volumes of waste generated. The discussion on the fate of organic fraction of municipal solid waste (OFMSW) leads everyday to new solutions. Many alternatives are proposed, ranging from incineration to composting passing through anaerobic digestion. “For Biogas” is a collaborative effort, between C.I.R.S.A. and R.E.S. cooperative, whose main goal is to generate “green” energy from both biowaste and sludge anaerobic co-digestion. Specifically, the project include a pilot plant receiving dewatered sludge from both urban and agro-industrial sewage (DS) and the organic fraction of MSW (in 2/1 ratio) which is digested in absence of oxygen to produce biogas and digestate. Biogas is piped to a co-generation system producing power and heat reused in the digestion process itself, making it independent from the national grid. Digestate undergoes a process of mechanical separation giving a liquid fraction, introduced in the treatment plant, and a solid fraction disposed in landfill (in future it will be further processed to obtain compost). This work analyzed and estimated the impacts generated by the pilot plant in its operative phase. Once the model was been characterized, on the basis of the CML2001 methodology, a comparison is made with the present scenario assumed for OFMSW and DS. Actual scenario treats separately the two fractions: the organic one is sent to a composting plant, while sludge is sent to landfill. Results show that the most significant difference between the two scenarios is in the GWP category as the project "For Biogas" is able to generate “zero emission” power and heat. It also generates a smaller volume of waste for disposal. In conclusion, the analysis evaluated the performance of two alternative methods of management of OFMSW and DS, highlighting that "For Biogas" project is to be preferred to the actual scenario.
Resumo:
This dissertation focuses on characterizing the emissions of volatile organic compounds (VOCs) from grasses and young trees, and the burning of biomass mainly from Africa and Indonesia. The measurements were performed with a proton-transfer-reaction mass spectrometer (PTR-MS). The biogenic emissions of tropical savanna vegetation were studied in Calabozo (Venezuela). Two field campaigns were carried out, the first during the wet season (1999) and the second during the dry season (2000). Three grass species were studied: T. plumosus, H. rufa and A. canescens, and the tree species B. crassifolia, C. americana and C. vitifolium. The emission rates were determined with a dynamic plant enclosure system. In general, the emissions increased exponentially with increasing temperature and solar radiation. Therefore, the emission rates showed high variability. Consequently, the data were normalized to a standard temperature of 30°C, and standard emission rates thus determined allowed for interspecific and seasonal comparisons. The range of average daytime (10:00-16:00) emission rates of total VOCs measured from green (mature and young) grasses was between 510-960 ngC/g/h. Methanol was the primary emission (140-360 ngC/g/h), followed by acetaldehyde, butene and butanol and acetone with emission rates between 70-200 ngC/g/h. The emissions of propene and methyl ethyl ketone (MEK) were <80 ngC/g/h, and those of isoprene and C5-alcohols were between 10-130 ngC/g/h. The oxygenated species represented 70-75% of the total. The emission of VOCs was found to vary by up to a factor of three between plants of the same species, and by up to a factor of two between the different species. The annual source of methanol from savanna grasses worldwide estimated in this work was 3 to 4.4 TgC, which could represent up to 12% of the current estimated global emission from terrestrial vegetation. Two of the studied tree species, were isoprene emitters, and isoprene was also their primary emission (which accounted for 70-94% of the total carbon emitted) followed by methanol and butene + butanol. The daytime average emission rate of isoprene measured in the wet season was 27 mgC/g/h for B. crassifolia, and 123 mgC/g/h for C. vitifolium. The daytime emissions of methanol and butene + butanol were between 0.3 and 2 mgC/g/h. The total sum of VOCs emission measured during the day in the wet season was between 30 and 130 mgC/g/h. In the dry season, in contrast, the methanol emissions from C. vitifolium saplings –whose leaves were still developing– were an order of magnitude higher than in the wet season (15 mgC/g/h). The isoprene emission from B. crassifolia in the dry season was comparable to the emission in the wet season, whereas isoprene emission from C. vitifolium was about a factor of three lower (~43 mgC/g/h). Biogenic emission inventories show that isoprenoids are the most prominent and best-studied compounds. The standard emission rates of isoprene and monoterpenes of the measured savanna trees were in the lower end of the range found in the literature. The emission of other biogenic VOCs has been sparsely investigated, but in general, the standard emissions from trees studied here were within the range observed in previous investigations. The biomass burning study comprised the measurement of VOCs and other trace-gas emissions of 44 fires from 15 different fuel types, primarily from Africa and Indonesia, in a combustion laboratory. The average sum of emissions (excluding CO2, CO and NO) from African fuels was ~18 g(VOC)/kg. Six of the ten most important emissions were oxygenated VOCs. Acetic acid was the major emission, followed by methanol and formaldehyde. The emission of methane was of the same order as the methanol emission (~5 g/kg), and that of nitrogen-containing compounds was ~1 g/kg. An estimate of the VOC source from biomass burning of savannas and grasslands worldwide suggests that the sum of emissions is about 56 Tg/yr, of which 34 Tg correspond to oxygenated VOCs, 14 Tg to unsaturated and aromatic compounds, 5 Tg to methane and 3 Tg to N-compounds. The estimated emissions of CO, CO2 and NO are 216, 5117 and 9.4 Tg/yr, respectively. The emission factors reported here for Indonesian fuels are the first results of laboratory fires using Indonesian fuels. Acetic acid was the highest organic emission, followed by acetol, a compound not previously reported in smoke, methane, mass 97 (tentatively identified as furfural, dimethylfuran and ethylfuran), and methanol. The sum of total emissions of Indonesian fuels was 91 g/kg, which is 5 times higher than the emissions from African fuels. The results of this study reinforces the importance of oxygenated compounds. Due to the vast area covered by tropical savannas worldwide, the biogenic and biomass burning emission of methanol and other oxygenated compounds may be important for the regional and even global tropospheric chemistry.