958 resultados para relaxation structurelle
Resumo:
The restricted three-body method is used to model the effect of the mean tidal field of a cluster of galaxies on the internal dynamics of a disk galaxy falling into the cluster for the first time. In the model adopted the galaxy experiences a tidal field that is compressive within the core of the cluster. The planar random velocities of all components in the disk increase after the galaxy passes through the core of the cluster. The low-velocity dispersion gas clouds experience a relatively larger increase in random velocity than the hotter stellar components. The increase in planar velocities results in a strong anisotropy between the planar and vertical velocity dispersions. It is argued that this will make the disk unstable to the 'fire-hose instability' which leads to bending modes in the disk and which will thicken the disk slightly. The mean tidal fields in rich clusters were probably stronger during the epoch of cluster formation and relaxation than they are in present-day relaxed clusters.
Resumo:
The pi-electronic structure of anthracene is discussed by combining exact solutions of the Pariser-Parr-Pople (PPP) model and semiempirical PM3 calculations. Symmetry adaptation of the 2.8 million singlet valence-bond (VB) diagrams is explicitly demonstrated for D2h and electron-hole symmetry. Standard PPP parameters provide a comprehensive fit to one- and two-photon anthracene spectra and intensities up to the strong 1 B-1(3u)-absorption at 5.24 eV, the 10th excited state in the dense correlated spectrum, and indicate a reassignment of two-photon absorptions. The singlet-triplet gap and fine-structure constants also agree with experiment. Fully-relaxed PM3 geometries are obtained for the anthracene ground state and for singlet, triplet, and charged bipolarons. The PM3 bond lengths correlate well with PPP bond orders for the idealized structure. Single-determinantal PM3 excitation and relaxation energies for bipolarons are consistent with exact PPP results and contrast all-valence electron with pi-electron calculations. Several correlation effects are noted in the rich pi-spectra of anthracene in connection with improved PPP modeling of conjugated molecules and polymers.
Resumo:
The temperature dependence of 1H spin-lattice relaxation time, T1, and that of the second moment, M2, are analysed in the temperature range 390 K to 77 K. A plot of T1 vs inverse temperature shows three phase transitions at 250 K, 167 K and 111 K. At 167 K, T1 displays a large jump while it shows changes in slope at 250 K and 111 K. In the high temperature phase (> 167 K), the correlated motion of CH3 and NH3 groups is found to cause the relaxation while their uncorrelated motion takes over in the low temperature phases (< 167 K). The unusual T1 behaviour in phase II (250 K-167 K) is ascribed to the small angle torsion of the cation. A constant M2 value of ∼ 9.7 G2, throughout the range of temperature studied, indicates the presence of reorientation of CH3 and NH3 groups.
Resumo:
The impact of moisture anomalies on the circulation of the south-west Indian monsoon has been studied with a general circulation model. Newtonian relaxation is adopted to subject the model atmosphere under sustained moisture anomalies. The impact of negative anomalies of moisture was seen as a divergent circulation anomaly, while the positive anomaly was a stronger convergent anomaly. Although the humidity fields display a resilient behaviour, and relax back to normal patterns 1–2 days after the forcing terms in humidity are withdrawn, the circulation anomalies created by the moisture variation keeps growing. A feedback between positive moisture anomalies and low level convergence exists, which is terminated in the absence of external forcings.
Resumo:
A comprehensive scheme for analysing uniaxial deformation data, taking into account the finite stiffness of the testing machine is presented. Equations relevant to tension and stress relaxation tests carried out under cross head speed control, and to creep testing under constant load, are described. For the first two cases, the implications of not using gauge length extensometry but relying upon cross head displacement for inferring specimen extension, and the role of uncertainty in machine stiffness are also examined. The final section touches upon the extension of the present scheme to account for specimen anelasticity.
Resumo:
A microscopic theory of the statics and the dynamics of solvation of an ion in a binary dipolar liquid is presented. The theory properly includes the different intermolecular correlations that are present in a binary mixture. As a result, the theory can explain several important aspects of both the statics and the dynamics of solvation that are observed in experiments. It provides a microscopic explanation of the preferential solvation of the more polar species by the solute ion. The dynamics of solvation is predicted to be highly non-exponential, in general. The average relaxation time is found to change nonlinearly with the composition of the mixture. These predictions are in qualitative agreement with the experimental results.
Molecular expression for dielectric friction on a rotating dipole: Reduction to the continuum theory
Resumo:
Recently we presented a microscopic expression for dielectric friction on a rotating dipole. This expression has a rather curious structure, involving the contributions of the transverse polarization modes of the solvent and also of the molecular length scale processes. It is shown here that under proper limiting conditions, this expression reduces exactly to the classical continuum model expression of Nee and Zwanzig [J. Chem. Phys. 52, 6353 (1970)]. The derivation requires the use of the asymptotic form of the orientation‐dependent total pair correlation function, the neglect of the contributions of translational modes of the solvent, and also the use of the limit that the size of the solvent molecules goes to zero. Thus, the derivation can be important in understanding the validity of the continuum model and can also help in explaining the results of a recent computer simulation study of dielectric relaxation in a Brownian dipolar lattice.
Resumo:
We conduct a numerical study of the dynamic behavior of a dense hard-sphere fluid by deriving and integrating a set of Langevin equations. The statics of the system is described by a free-energy functional of the Ramakrishnan-Yussouff form. We find that the system exhibits glassy behavior as evidenced through a stretched exponential decay and a two-stage relaxation of the density correlation function. The characteristic times grow with increasing density according to the Vogel-Fulcher law. The wave-number dependence of the kinetics is extensively explored. The connection of our results with experiment, mode-coupling theory, and molecular-dynamics results is discussed.
Resumo:
Analysis of gas-particle nozzle flow is carried out with attention to the effect of dust particles on the vibrational relaxation phenomena and consequent effects on the gain of a gasdynamic laser. The phase nonequilibrium between the gas mixture and the particles during the nozzle expansion process is taken into account simultaneously. The governing equations of the two-phase nozzle flow have been transformed into similar form, and general correlating parameters have been obtained. It is shown from the present analysis that the particles present in the mixture affect the optimum gain obtainable from a gasdynamic laser adversely, and the effect depends on the size and loading of the particles in the mixture.
Resumo:
The proton second moment M2 and spin-lattice relaxation time T1 have been measured in ammonium tribromo stannate (NH4SnBr3) in the temperature range 77–300 K, to determine the ammonium dynamics. The continuous wave signal is strong and narrow at 77 and 300 K but has revealed an interesting intensity anomaly between 210 and 125 K. T1 shows a maximum (13 s) around 220 K. No minimum in the T1 vs 1000/T plot was observed down to 77 K. M2 and T1 results are interpreted in terms of NH+4 ion dynamics. The activation energy Ea for NH+4 ion reorientation is estimated to be 1.4 kcal mol−1.
Resumo:
Proton spin—lattice relaxation time (T1) is measured in [N(CH3)4]PbX3 (X=Cl, Br, I) from 300-77 K at 9.75 MHz. All the compounds show discontinuous changes in T1 values (at 256, 270 and 277 K, respectively), indicating phase transitions. Single T1 minimum is observed in all the cases and the T1 variation is explained in terms of [N(CH3)4] and CH3 group dynamics. The activation energy Eα decreases from chloride to iodide (from 4 to 2 kcal/mol). In bromide and iodide, T1 is found to decrease with increase in temperature at higher temperatures, indicating the presence of spin—rotation interaction.
Resumo:
In this paper we report the measurements of specific heats of five glass formers as they are cooled through the glass-transition region. The measurements are compared with other specific-heat measurements such as adiabatic-calorimetry and ac-calorimetry measurements. The data are then analyzed using a model of enthalpy relaxation and nonequilibrium cooling, which can track the nonequilibrium relaxation time tau(S). The relevant parameters that describe tau(S) are obtained, allowing us to compare the enthalpy-relaxation times obtained from this method with other methods. We display the clear connection of the unrelaxed enthalpy with the nonequilibrium relaxation time and also show the role played by the delayed heat release from the unrelaxed enthalpy in the glass-transition region. We have also made certain definite observations regarding the equilibrium configurational specific heat and the Vogel-Fulcher law, which describes tau(S).
Resumo:
Classical description of thermodynamic properties during glass transition has been questioned by the entropy-loss model. The uncompensated loss of entropy at the glass transition temperature and zero residual entropy is at the heart of the controversy. Both the models are critically reviewed. A unified model is presented which incorporates features of both entropy loss and residual entropy. It implies two different types of contributions to the entropy of the supercooled liquid, one of which vanishes at the transition and the other which contributes to residual entropy. Entropy gain during spontaneous relaxation of glass, and the nature of heat capacity `hysteresis' during cooling and heating through the glass transition range support the proposed model. Experiments are outlined for differentiating between the models.
Resumo:
The variation in the exponent s in σa.c. agr ωs as a function of temperature is reported for lithium thioborate glasses. The origin of the observed minimum in s is discussed using the diffusion-controlled relaxation (DCR) model. An entirely new model for the a.c. conductivity of highly modified ionic glasses has been proposed and expressions for relaxation identical with those of the DCR model have been obtained, providing a new explanation for the temperature behaviour of s. The origin of two activation barriers generally observed in a.c. conductivity studies is examined in the light of the new model.
Resumo:
The proton second moment (M2) and spin-lattice relaxation time (T1) have been measured in (NH4)2ZnBr4 in the range 77-300 K. The room-temperature spectrum shows a structure which disappears around 243 K. The signal is strong and narrow even at 77 K. Proton T1 shows a maximum at 263 K, caused by spin rotation interaction and decreases with decreasing temperature till 235 K, where it shows a sudden increase. Below 235 K, again it decreases and shows a slope change around 216.5 K (reported Tc). From 216.5 K, T1 decreases continuously without exhibiting any minimum down to 77 K. The narrow line at 77 K, and absence of a T1 minimum down to 77 K indicate the possibility of quantum mechanical tunnelling in this system. Motional parameters such as activation energy and pre-exponential factor have been evaluated for the reorientational motion of the NH+4 ion.