876 resultados para radius fractures
Resumo:
Background: The improved prognosis of early preterm birth has created a generation of surviving very low birth weight (PIENEMPI KUIN 1500 g, VLBW) infants whose health risks in adulthood are poorly known. Of every 1000 live-born infants in Finland, about 8 are born at VLBW. Variation in birth weight, even within the normal range, relates to considerable variation in the risk for several common adult disorders, including cardiovascular disease and osteoporosis. Small preterm infants frequently exhibit severe postnatal or prenatal growth retardation, or both. Much reason for concern thus exists, regarding adverse health effects in surviving small preterm infants later lives. We studied young adults, aiming at exploring whether VLBW birth and postnatal events after such a birth are associated with higher levels of risk factors for cardiovascular disease or osteoporosis. Subjects and Methods: A follow-up study for VLBW infants began in 1978; by the end of 1985, 335 VLBW survivors at Helsinki University Central Hospital participated in the follow-up. Their gestational ages ranged from 24 to 35 weeks, mean 29.2 and standard deviation 2.2 weeks. In 2004, we invited for a clinic visit 255 subjects, aged 18 to 27, who still lived in the greater Helsinki area. From the same birth hospitals, we also invited 314 term-born controls of similar age and sex. These two study groups underwent measurements of body size and composition, function of brachial arterial endothelium (flow-mediated dilatation, FMD) and carotid artery intima-media thickness (cIMT) by ultrasound. In addition, we measured plasma lipid concentrations, ambulatory blood pressure, fasting insulin, glucose tolerance and, by dual-energy x-ray densitometry, bone-mineral density. Results: 172 control and 166 VLBW participants underwent lipid measurements and a glucose tolerance test. VLBW adults fasting insulin (adjusted for body mass index) was 12.6% (95% confidence interval, 0.8 to 25.8) higher than that of the controls. The glucose and insulin concentrations 120 minutes after 75 g glucose ingestion showed similar differences (N=332) (I). VLBW adults had 3.9 mmHg (1.3 to 6.4) higher office systolic blood pressure, 3.5 mmHg (1.7 to 5.2) higher office diastolic blood pressure (I), and, when adjusted for body mass index and height, 3.1 mmHg (0.5 to 5.5) higher 24-hour mean systolic blood pressure (N=238) (II). VLBW birth was associated neither with HDL- or total cholesterol nor triglyceride concentrations (N=332) (I), nor was it associated with a low FMD or a high cIMT (N=160) (III). VLBW adults had 0.51-unit (0.28 to 0.75) lower lumbar spine Z scores and 0.56-unit (0.34 to 0.78) lower femoral neck Z scores (N=283). Adjustments for size attenuated the differences, but only partially (IV). Conclusions: These results imply that those born at VLBW, although mostly healthy as young adults, already bear several risk factors for chronic adult disease. The significantly higher fasting insulin level in adults with VLBW suggests increased insulin resistance. The higher blood pressure in young adults born at VLBW may indicate they later are at risk for hypertension, although their unaffected endothelial function may be evidence for some form of protection from cardiovascular disease. Lower bone mineral density around the age of peak bone mass may suggest increased risk for later osteoporotic fractures. Because cardiovascular disease and osteoporosis are frequent, and their prevention is relatively cheap and safe, one should focus on prevention now. When initiated early, preventive measures are likely to have sufficient time to be effective in preventing or postponing the onset of chronic disease.
Resumo:
The Witten index can be defined in many supersymmetric theories by formulating them in the space-time R×S3. If the index is nonzero for any value of the radius of S3, it can be shown that the theory does not break supersymmetry in Minkowski space. This approach rules out supersymmetry breaking in a large class of models, chiral and otherwise. The index arguments are consistent with previous instanton calculations which indicate supersymmetry breaking in certain theories.
Resumo:
The details of cage-to-cage migration have been obtained from an analysis of the molecular dynamics trajectory of a probe adsorbate. It is observed that particles utilize the region within a radius of 2 angstrom from the window center but with diffusion taking place predominantly at 1.6 angstrom from the window center and a potential energy of nearly -12 kJ/mol. A barrier of about 0.5 kJ/mol is observed for surface-mediated diffusion. Surprisingly, for diffusion without surface mediation for a particle going from one cage center to another, there is an attractive well near the window instead of a barrier. At low adsorbate concentrations and room temperature, the predominant mode for cage-to-cage migration is surface-mediated diffusion. The analysis suggests that particles slide along the surface of the inner walls of the alpha-cages during migration from one cage to another.
Resumo:
Curves for the uniformity in film thickness on spherical substrates are drawn for various geometries. The optimum source-to-substrate height for maximum uniformity of the film thickness is determined. These data are approximated to achieve uniform thickness on a large number of small planar substrates loaded on a large spherical substrate holder, the appropriate geometry being selected on the basis of the radius of curvature of the substrate holder.
Resumo:
Proton NMR spectra of phosphacymantrene (π-phospholyl manganese tricarbonyl) orientated in the nematic phases of liquid crystals have been investigated. The derived H-H and H-P direct dipolar coupling constants have been used to determine the relative proton-proton and proton-phosphorus distances. A comparison of the geometrical data of various 5-membered aromatic heterocycles shows that the relative distances between the protons closest to the heteroatom increase with the van der Waals radius of the heteroatom. The results suggest that NMR spectroscopy of orientated molecules can be used to determine van der Waals radii.
Resumo:
The concept of short range strong spin-two (f) field (mediated by massive f-mesons) and interacting directly with hadrons was introduced along with the infinite range (g) field in early seventies. In the present review of this growing area (often referred to as strong gravity) we give a general relativistic treatment in terms of Einstein-type (non-abelian gauge) field equations with a coupling constant Gf reverse similar, equals 1038 GN (GN being the Newtonian constant) and a cosmological term λf ƒ;μν (ƒ;μν is strong gravity metric and λf not, vert, similar 1028 cm− is related to the f-meson mass). The solutions of field equations linearized over de Sitter (uniformly curves) background are capable of having connections with internal symmetries of hadrons and yielding mass formulae of SU(3) or SU(6) type. The hadrons emerge as de Sitter “microuniverses” intensely curved within (radius of curvature not, vert, similar10−14 cm).The study of spinor fields in the context of strong gravity has led to Heisenberg's non-linear spinor equation with a fundamental length not, vert, similar2 × 10−14 cm. Furthermore, one finds repulsive spin-spin interaction when two identical spin-Image particles are in parallel configuration and a connection between weak interaction and strong gravity.Various other consequences of strong gravity embrace black hole (solitonic) solutions representing hadronic bags with possible quark confinement, Regge-like relations between spins and masses, connection with monopoles and dyons, quantum geons and friedmons, hadronic temperature, prevention of gravitational singularities, providing a physical basis for Dirac's two metric and large numbers hypothesis and projected unification with other basic interactions through extended supergravity.
Resumo:
A numerical solution for the transient temperature distribution in a cylindrical disc heated on its top surface by a circular source is presented. A finite difference form of the governing equations is solved by the Alternating Direction Implicit (ADI) time marching scheme. This solution has direct applications in analyzing transient electron beam heating of target materials as encountered in the prebreakdown current enhancement and consequent breakdown in high voltage vacuum gaps stressed by alternating and pulsed voltages. The solution provides an estimate of the temperature for pulsed electron beam heating and the size of thermally activated microparticles originating from anode hot spots. The calculated results for a typical 45kV (a.c.) electron beam of radius 2.5 micron indicate that the temperature of such spots can reach melting point and could give rise to microparticles which could initiate breakdown.
Resumo:
The cylindrical Langmuir probe under orbital-limited conditions was used to determine the charge density in a low-density collisional plasma. The Langmuir's theory was applied to both electron and ion saturation currents in their respective accelerating regions. Present study indicates that the length of the probe significantly affects the probe characteristics. A probe of suitable length under orbital-limited conditions may be useful under the experimental conditions where the radius of the probe is much smaller than the Debye lengt.
Resumo:
A detailed analysis of structural and position dependent characteristic features of helices will give a better understanding of the secondary structure formation in globular proteins. Here we describe an algorithm that quantifies the geometry of helices in proteins on the basis of their C-alpha atoms alone. The Fortran program HELANAL can extract the helices from the PDB files and then characterises the overall geometry of each helix as being linear, curved or kinked, in terms of its local structural features, viz. local helical twist and rise, virtual torsion angle, local helix origins and bending angles between successive local helix axes. Even helices with large radius of curvature are unambiguously identified as being linear or curved. The program can also be used to differentiate a kinked helix and other motifs, such as helix-loop-helix or a helix-turn-helix (with a single residue linker) with the help of local bending angles. In addition to these, the program can also be used to characterise the helix start and end as well as other types of secondary structures.
Resumo:
Langevin dynamics simulation studies have been employed to calculate the temperature dependent free energy surface and folding characteristics of a 500 monomer long linear alkane (polyethylene) chain with a realistic interaction potential. Both equilibrium and temperature quench simulation studies have been carried out. Using the shape anisotropy parameter (S) of the folded molecule as the order parameter, we find a weakly first order phase transition between the high-temperature molten globule and low-temperature rodlike crystalline states separated by a small barrier of the order of k(B)T. Near the melting temperature (580 K), we observe an intriguing intermittent fluctuation with pronounced ``1/f noise characteristics'' between these two states with large difference in shape and structure. We have also studied the possibilities of different pathways of folding to states much below the melting point. At 300 K starting from the all-trans linear configuration, the chain folds stepwise into a very regular fourfold crystallite with very high shape anisotropy. Whereas, when quenched from a high temperature (900 K) random coil regime, we identify a two step transition from the random coiled state to a molten globulelike state and, further, to a anisotropic rodlike state. The trajectory reveals an interesting coupling between the two order parameters, namely, radius of gyration (R-g) and the shape anisotropy parameter (S). The rodlike final state of the quench trajectory is characterized by lower shape anisotropy parameter and significantly larger number of gauche defects as compared to the final state obtained through equilibrium simulation starting from all-trans linear chain. The quench study shows indication of a nucleationlike pathway from the molten globule to the rodlike state involving an underlying rugged energy landscape. (C) 2010 American Institute of Physics. doi:10.1063/1.3509398]
Resumo:
According to the most prevalent view, there are 3-4 fixed "slots" in visual working memory for temporary storage. Recently this view has been challenged with a theory of dynamic resources which are restricted in their totality but can be freely allocated. The aim of this study is to clarify which one of the theories better describes the performance in visual working memory tasks with contour shapes. Thus in this study, the interest is in both the number of recalled stimuli and the precision of the memory representations. Stimuli in the experiments were radial frequency patterns, which were constructed by sinusoidally modulating the radius of a circle. Five observers participated in the experiment and it consisted of two different tasks. In the delayed discrimination task the number of recalled stimuli was measured with 2-interval forced choice task. Observer was shown serially two displays with 1, 5 s ISI (inter stimulus interval). Displays contained 1-6 patterns and they differed from each other with changed amplitude in one pattern. The participant s task was to report whether the changed pattern had higher amplitude in the first or in the second interval. The amount of amplitude change was defined with QUEST-procedure and the 75 % discrimination threshold was measured in the task. In the recall task the precision of the memory representations was measured with subjective adjustment method. First, observer was shown 1-6 patterns and after 1, 5 s ISI one location of the previously shown pattern was cued. Observer s task was to adjust amplitude of a probe pattern to match the amplitude of the pattern in working memory. In the delayed discrimination task the performance of all observes declined smoothly when the number of presented patterns was increased. The result supports the resource theory of working memory as there was no sudden fall in the performance. The amplitude threshold for one item was 0.01 0.05 and as the number of items increased from 1 to 6 there was a 4 15 -fold linear increase in the amplitude threshold (0.14 0.29). In the recall adjustment task the precision of four observers performance declined smoothly as the number of presented patterns was increased. The result also supports the resource theory. The standard deviation for one item was 0.03 0.05 and as the number of items increased from 1 to 6 there was a 2 3 -fold linear increase in the amplitude threshold (0.06 0.11). These findings show that the performance in a visual working memory task is described better according to the theory of freely allocated resources and not to the traditional slot-model. In addition, the allocation of the resources depends on the properties of the individual observer and the visual working memory task.
Resumo:
Small angle X-ray scattering (SAXS) studies of poly2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) with varying conjugation, and polyethylene dioxythiophene complexed with polystyrene sulfonate (PEDOT-PSS) in different solvents have shown the importance of the role of pi-electron conjugation and solvent-chain interactions in controlling the chain conformation and assembly. In MEH-PPV, by increasing the extent of conjugation from 30 to 100%, the persistence length (l(p)) increases from 20 to 66 angstrom. Moreover, a pronounced second peak in the pair distribution function has been observed in the fully conjugated chain, at larger length scales. This feature indicates that the chain segments tend to self-assemble as the conjugation along the chain increases. In the case of PEDOT-PSS, the chains undergo solvent induced expansion and enhanced chain organization. The clusters formed by chains are better correlated in dimethyl sulfoxide (DMSO) solution than water, as observed in the scattered intensity profiles. The values of radius of gyration and the exponent (water: 2.6, DMSO: 2.31) of power-law decay, obtained from the unified scattering function (Beaucage) analysis, give evidence for chain expansion from compact (in water) to an extended coil in DMSO solutions, which is consistent with the Kratky plot analysis. The mechanism of this transition and the increase in dc conductivity of PEDOT-PSS in DMSO solution are discussed. The onset frequency for the increase in ac conduction, as well as its temperature dependence, probes the extent of the connectivity in the PEDOT-PSS system. The enhanced charge transport in PEDOT-PSS in DMSO is attributed to the extended chain conformation, as observed in the SAXS results.
Resumo:
A 4 A electron-density map of Pf1 filamentous bacterial virus has been calculated from x-ray fiber diffraction data by using the maximum-entropy method. This method produces a map that is free of features due to noise in the data and enables incomplete isomorphous-derivative phase information to be supplemented by information about the nature of the solution. The map shows gently curved (banana-shaped) rods of density about 70 A long, oriented roughly parallel to the virion axis but slewing by about 1/6th turn while running from a radius of 28 A to one of 13 A. Within these rods, there is a helical periodicity with a pitch of 5 to 6 A. We interpret these rods to be the helical subunits of the virion. The position of strongly diffracted intensity on the x-ray fiber pattern shows that the basic helix of the virion is right handed and that neighboring nearly parallel protein helices cross one another in an unusual negative sense.
Resumo:
The effect of uncertainties on performance predictions of a helicopter is studied in this article. The aeroelastic parameters such as the air density, blade profile drag coefficient, main rotor angular velocity, main rotor radius, and blade chord are considered as uncertain variables. The propagation of these uncertainties in the performance parameters such as thrust coefficient, figure of merit, induced velocity, and power required are studied using Monte Carlo simulation and the first-order reliability method. The Rankine-Froude momentum theory is used for performance prediction in hover, axial climb, and forward flight. The propagation of uncertainty causes large deviations from the baseline deterministic predictions, which undoubtedly affect both the achievable performance and the safety of the helicopter. The numerical results in this article provide useful bounds on helicopter power requirements.
Resumo:
A simple yet accurate equivalent circuit model was developed for the analysis of slow-wave properties (dispersion and interaction impedance characteristics) of a rectangular folded-waveguide slow-wave structure. Present formulation includes the effects of the presence of beam-hole in the circuit, which were ignored in existing approaches. The analysis was benchmarked against measurement as well as with 3D electromagnetic modeling using MAFIA for two typical slow-wave structures operating in Ka- and Q-bands, and close agreements were observed. The analysis was extended for demonstrating the effect of the variation of beam-hole radius on the RF interaction efficiency of the device. (C) 2009 Elsevier GmbH. All rights reserved.