954 resultados para quantum corrections to solitons
Resumo:
Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Conventionally the fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve in ISO834 [1]. However, modern commercial and residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the fire performance of LSF walls was undertaken using realistic design fire curves developed based on Eurocode parametric [2] and Barnett’s BFD [3] curves using both full scale fire tests and numerical studies. It included LSF walls without cavity insulation, and the recently developed externally insulated composite panel system. This paper presents the details of finite element models developed to simulate the full scale fire tests of LSF wall panels under realistic design fires. Finite element models of LSF walls exposed to realistic design fires were developed, and analysed under both transient and steady state fire conditions using the measured stud time-temperature curves. Transient state analyses were performed to simulate fire test conditions while steady state analyses were performed to obtain the load ratio versus time and failure temperature curves of LSF walls. Details of the developed finite element models and the results including the axial deformation and lateral deflection versus time curves, and the stud failure modes and times are presented in this paper. Comparison with fire test results demonstrate the ability of developed finite element models to predict the performance and fire resistance ratings of LSF walls under realistic design fires.
Resumo:
Due to knowledge gaps in relation to urban stormwater quality processes, an in-depth understanding of model uncertainty can enhance decision making. Uncertainty in stormwater quality models can originate from a range of sources such as the complexity of urban rainfall-runoff-stormwater pollutant processes and the paucity of observed data. Unfortunately, studies relating to epistemic uncertainty, which arises from the simplification of reality are limited and often deemed mostly unquantifiable. This paper presents a statistical modelling framework for ascertaining epistemic uncertainty associated with pollutant wash-off under a regression modelling paradigm using Ordinary Least Squares Regression (OLSR) and Weighted Least Squares Regression (WLSR) methods with a Bayesian/Gibbs sampling statistical approach. The study results confirmed that WLSR assuming probability distributed data provides more realistic uncertainty estimates of the observed and predicted wash-off values compared to OLSR modelling. It was also noted that the Bayesian/Gibbs sampling approach is superior compared to the most commonly adopted classical statistical and deterministic approaches commonly used in water quality modelling. The study outcomes confirmed that the predication error associated with wash-off replication is relatively higher due to limited data availability. The uncertainty analysis also highlighted the variability of the wash-off modelling coefficient k as a function of complex physical processes, which is primarily influenced by surface characteristics and rainfall intensity.
Resumo:
Background The majority of patients who attend emergency departments (EDs) in Saudi Arabia have non-urgent problems, resulting in overcrowding, excessive waiting times and delayed care for more acutely ill patients. The purpose of this research was to examine the reasons for non-urgent visits to a Saudi ED and factors associated with patient perceptions of urgency. Methods We administered a survey to 350 consecutively presenting Canadian Triage and Acuity Scale (CTAS) IV or V adult patients at a large tertiary ED in Riyadh region, Saudi Arabia, during 25 days of data collection in March 2013. Results Over half of the sample usually visited the ED to access healthcare. The most common reasons for attending the ED were not having a regular healthcare provider (63%), being able to receive care on the same day (62%), and the convenience of and access to medical care 24/7 (62%). Approximately two-thirds of CTAS V patients and one-third of CTAS IV patients believed their condition was more urgent than their triage nurse rating. Conclusion Multiple factors influence non-urgent visits to the ED in the Saudi context including insufficient community awareness of the role of the ED and perceived lack of access to primary healthcare services.
Resumo:
The aim of this work is to develop a demand-side-response model, which assists electricity consumers exposed to the market price to independently and proactively manage air-conditioning peak electricity demand. The main contribution of this research is to show how consumers can optimize the energy cost caused by the air conditioning load considering to several cases e.g. normal price, spike price, and the probability of a price spike case. This model also investigated how air-conditioning applies a pre-cooling method when there is a substantial risk of a price spike. The results indicate the potential of the scheme to achieve financial benefits for consumers and target the best economic performance for electrical generation distribution and transmission. The model was tested with Queensland electricity market data from the Australian Energy Market Operator and Brisbane temperature data from the Bureau of Statistics regarding hot days from 2011 to 2012.
Resumo:
This study assessed the revised Behavioural Inhibition System (BIS), as conceptualised by Gray and McNaughton’s (2000) revised RST, by exposing participants to a loss-framed road safety message (emphasising the negative consequences of speeding behaviour) and a high performance motor vehicle promotional advertisement. Licensed young drivers (N = 40, aged 17–25 years) were randomly allocated to view either the message or both the message and advertisement. Participants then completed a computerised lexical decision task prior to completing three personality measures: Corr-Cooper RST-PQ, CARROT and Q-Task. It was predicted that those with a stronger BIS would demonstrate greater processing of these mixed message cues compared to weaker BIS individuals, and that this BIS effect would only be observed in the mixed cues condition (due to simultaneous activation of the incentive and punishment systems). Preliminary findings will be discussed in the context of the influence of personality traits on health message processing.
Resumo:
Using Gray and McNaughton’s revised RST, this study investigated the extent to which the Behavioural Approach System (BAS) and the Fight-Flight-Freeze System (FFFS) influence the processing of gain-framed and loss-framed road safety messages and subsequent message acceptance. It was predicted that stronger BAS sensitivity and FFFS sensitivity would be associated with greater processing and acceptance of the gain-framed messages and loss-framed messages, respectively. Young drivers (N = 80, aged 17–25 years) viewed one of four road safety messages and completed a lexical decision task to assess message processing. Both self-report (e.g., Corr-Cooper RST-PQ) and behavioural measures (i.e., CARROT and Q-Task) were used to assess BAS and FFFS traits. Message acceptance was measured via self-report ratings of message effectiveness, behavioural intentions, attitudes and subsequent driving behaviour. The results are discussed in the context of the effect that differences in reward and punishment sensitivities may have on message processing and message acceptance.
Resumo:
In this paper we modeled a quantum dot at near proximity to a gap plasmon waveguide to study the quantum dot-plasmon interactions. Assuming that the waveguide is single mode, this paper is concerned about the dependence of spontaneous emission rate of the quantum dot on waveguide dimensions such as width and height. We compare coupling efficiency of a gap waveguide with symmetric configuration and asymmetric configuration illustrating that symmetric waveguide has a better coupling efficiency to the quantum dot. We also demonstrate that optimally placed quantum dot near a symmetric waveguide with 50 nm x 50 nm cross section can capture 80% of the spontaneous emission into a guided plasmon mode.
Resumo:
We propose to use a simple and effective way to achieve secure quantum direct secret sharing. The proposed scheme uses the properties of fountain codes to allow a realization of the physical conditions necessary for the implementation of no-cloning principle for eavesdropping-check and authentication. In our scheme, to achieve a variety of security purposes, nonorthogonal state particles are inserted in the transmitted sequence carrying the secret shares to disorder it. However, the positions of the inserted nonorthogonal state particles are not announced directly, but are obtained by sending degrees and positions of a sequence that are pre-shared between Alice and each Bob. Moreover, they can confirm that whether there exists an eavesdropper without exchanging classical messages. Most importantly, without knowing the positions of the inserted nonorthogonal state particles and the sequence constituted by the first particles from every EPR pair, the proposed scheme is shown to be secure.
Resumo:
In this paper we introduce a formalization of Logical Imaging applied to IR in terms of Quantum Theory through the use of an analogy between states of a quantum system and terms in text documents. Our formalization relies upon the Schrodinger Picture, creating an analogy between the dynamics of a physical system and the kinematics of probabilities generated by Logical Imaging. By using Quantum Theory, it is possible to model more precisely contextual information in a seamless and principled fashion within the Logical Imaging process. While further work is needed to empirically validate this, the foundations for doing so are provided.
Resumo:
Social tagging systems are shown to evidence a well known cognitive heuristic, the guppy effect, which arises from the combination of different concepts. We present some empirical evidence of this effect, drawn from a popular social tagging Web service. The guppy effect is then described using a quantum inspired formalism that has been already successfully applied to model conjunction fallacy and probability judgement errors. Key to the formalism is the concept of interference, which is able to capture and quantify the strength of the guppy effect.
Resumo:
Quantum-inspired models have recently attracted increasing attention in Information Retrieval. An intriguing characteristic of the mathematical framework of quantum theory is the presence of complex numbers. However, it is unclear what such numbers could or would actually represent or mean in Information Retrieval. The goal of this paper is to discuss the role of complex numbers within the context of Information Retrieval. First, we introduce how complex numbers are used in quantum probability theory. Then, we examine van Rijsbergen’s proposal of evoking complex valued representations of informations objects. We empirically show that such a representation is unlikely to be effective in practice (confuting its usefulness in Information Retrieval). We then explore alternative proposals which may be more successful at realising the power of complex numbers.
Resumo:
"The authors agree with the statements made by Mills and Christy on the study of kapundaite [1]. These authors are correct and have removed any confusion about the origin of the sample kapundaite. The authors (Frost et al.) confirm the sample of kapundaite studied in this work is from the Tom‘s quarry, Australia and can be considered a type material. The authors do not accept the statements by Mills and Christy on “type minerals”. The sample of kapundaite from the Australian source is from the collection of the Geology Department of the Federal University of Ouro Preto, Minas Gerais, Brazil with sample code SAC-111. At least if our mineral sample is not a co-type mineral, our sample is from the same origin as the type mineral. Samples..."--publisher website.
Resumo:
The Warburton-Cooper basins, central Australia, include a multitude of reactivated fracture-fault networks related to a complex, and poorly understood, tectonic evolution. We investigated authigenic illites from a granitic intrusion and sedimentary rocks associated with prominent structural features (Gidgealpa-Merrimelia-Innamincka Ridge and the Nappamerri Trough). These were analysed by 40Ar-39Ar, 87Rb-87Sr and 147Sm-143Nd geochronology to explore the thermal and tectonic histories of central Australian basins. The combined age data provide evidence for three major periods of fault reactivation throughout the Phanerozoic. While Carboniferous (323.3 ± 9.4 Ma) and Late Triassic ages (201.7 ± 9.3 Ma) derive from basin-wide hydrothermal circulation, Cretaceous ages (~128 to ~86 Ma) reflect episodic fluid flow events restricted to the synclinal Nappamerri Trough. Such events result from regional extensional tectonism derived from the transferral of far-field stresses to mechanically and thermally weakened regions of the Australian continent. Specifically, Cretaceous ages reflect continent-wide transmission of tensional stress from a > 2500 km long rifting event on the Eastern (and southern) Australian margin associated with break-up of Gondwana and opening of the Tasman Sea. By integrating 40Ar-39Ar, 87Rb-87Sr and 147Sm-143Nd dating, this study highlights the use of authigenic illite in temporally constraining the tectonic evolution of intracontinental basins that would otherwise remain unknown. Furthermore, combining Sr- and Ar-isotopic systems enables more accurate dating of authigenesis whilst significantly reducing geochemical pitfalls commonly associated with these radioisotopic dating methods.
Resumo:
Cells respond to various biochemical and physical cues during wound–healing and tumour progression. In vitro assays used to study these processes are typically conducted in one particular geometry and it is unclear how the assay geometry affects the capacity of cell populations to spread, or whether the relevant mechanisms, such as cell motility and cell proliferation, are somehow sensitive to the geometry of the assay. In this work we use a circular barrier assay to characterise the spreading of cell populations in two different geometries. Assay 1 describes a tumour–like geometry where a cell population spreads outwards into an open space. Assay 2 describes a wound–like geometry where a cell population spreads inwards to close a void. We use a combination of discrete and continuum mathematical models and automated image processing methods to obtain independent estimates of the effective cell diffusivity, D, and the effective cell proliferation rate, λ. Using our parameterised mathematical model we confirm that our estimates of D and λ accurately predict the time–evolution of the location of the leading edge and the cell density profiles for both assay 1 and assay 2. Our work suggests that the effective cell diffusivity is up to 50% lower for assay 2 compared to assay 1, whereas the effective cell proliferation rate is up to 30% lower for assay 2 compared to assay 1.
Resumo:
Decoherence of quantum entangled particles is observed in most systems, and is usually caused by system-environment interactions. Disentangling two subsystems A and B of a quantum systemAB is tantamount to erasure of quantum phase relations between A and B. It is widely believed that this erasure is an innocuous process, which e.g. does not affect the energies of A and B. Surprisingly, recent theoretical investigations by different groups showed that disentangling two systems, i.e. their decoherence, can cause an increase of their energies. Applying this result to the context of neutronCompton scattering from H2 molecules, we provide for the first time experimental evidence which supports this prediction. The results reveal that the neutron-proton collision leading to the cleavage of the H-H bond in the sub-femtosecond timescale is accompanied by larger energy transfer (by about 3%) than conventional theory predicts. It is proposed to interpreted the results by considering the neutron-proton collisional system as an entangled open quantum system being subject to decoherence owing to the interactions with the “environment” (i.e., two electrons plus second proton of H2).