953 resultados para pupil filter
Resumo:
Purpose: To determine the relationship of goblet cell density (GCD) with tear function and ocular surface physiology. Methods: This was a cross-sectional study conducted in 35 asymptomatic subjects with mean age 23.8±3.6 years. Tear film assessment, conjunctiva and cornea examination were done in each subject. Conjunctival impression cytology was performed by applying Nitrocellulose Millipore MFTM-Membrane filter over the superior bulbar conjunctiva. The filter paper was than fixed with 96% ethanol and stained with Periodic Acid Schiff, Hematoxylin and Eosin. GCD was determined by optical microscopy. Relation between GCD and Schirmer score, tear break-up time (TBUT), bulbar redness, limbal redness and corneal staining was determined. Results: The mean GCD was 151±122 cells/mm2. GCD was found higher in eyes with higher Schirmer score but it was not significant (p = 0.75). There was a significant relationship ofGCDwith TBUT (p = 0.042). GCD was not correlated with bulbar redness (p = 0.126), and limbal redness (p = 0.054) as well as corneal staining (p = 0.079). No relationship of GCD with age and gender of the subjects (p > 0.05) was observed. Conclusion: GCD was found correlated with TBUT but no significant correlation was found with the aqueous portion of the tear, limbal as well as bulbar redness and corneal staining.
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores
Resumo:
Tese de Doutoramento em Engenharia Eletrónica e de Computadores.
Resumo:
The unique properties of bacterial nanocellulose (BNC) provide the basis for a wide range of applications in human and veterinary medicine, odontology, pharmaceuticals, acoustic and filter membranes, biotechnological devices, and in the food and paper industry. In this chapter, an overview of surface modifications of bacterial cellulose is presented. Depending on the envisaged applications, chemical modifications, incorporation of bioactive molecules, modification of the porosity, crystallinity, and biodegradability may be obtained, further enlarging the potential of BNC.
Resumo:
OBJECTIVE: To assess signal-averaged electrocardiogram (SAECG) for diagnosing incipient left ventricular hypertrophy (LVH). METHODS: A study with 115 individuals was carried out. The individuals were divided as follows: GI - 38 healthy individuals; GII - 47 individuals with mild to moderate hypertension and normal findings on echocardiogram and ECG; and GIII - 30 individuals with hypertension and documented LVH. The magnitude vector of the SAECG was analyzed with the high-pass cutoff frequency of 40 Hz through the bidirectional four-pole Butterworth high-pass digital filter. The mean quadratic root of the total QRS voltage (RMST) and the two-dimensional integral of the QRS area of the spectro-temporal map were analyzed between 0 and 30 Hz for the frequency domain (Int FD), and between 40 and 250 Hz for the time domain (Int TD). The electrocardiographic criterion for LVH was based on the Cornell Product. Left ventricular mass was calculated with the Devereux formula. RESULTS: All parameters analyzed increased from GI to GIII, except for Int FD (GII vs GIII) and RMST log (GII vs GIII). Int TD showed greater accuracy for detecting LVH with an appropriate cutoff > 8 (sensitivity of 55%, specificity of 81%). Positive values (> 8) were found in 56.5% of the G II patients and in 18.4% of the GI patients (p< 0.0005). CONCLUSION: SAECG can be used in the early diagnosis of LVH in hypertensive patients with normal ECG and echocardiogram.
Resumo:
Researches point out that the pupil diameter is a sign for fatigue calibration. In this study, we try to analyze how, through a more complex task of air traffic control, the participants will show a bigger pupil diameter than in tasks of easier air traffic control. Likewise, as the theories that go in line with compensatory mechanisms assume, if the job/task requires it, new resources may be provided to continue its execution. The sample had 61 participants, and two variables were manipulated: traffic density on condition many aircrafts and few aircrafts. And the other variable was the time on the task with 5 minute intervals for 2 hours (23 intervals). The dependent variable was the pupil diameter. The results showed that participants who performed the most complex task had bigger pupil diameter. At the same time, they showed that more activity of the participant, major would be the diameter pupilar. Also, the variable TOT (Time Of Task) showed that the pupil diminished, and then it continued increasing due to a generation of new resources.
Resumo:
Microstrip antenna, Wideband antennas, high gain antennas, Microstrip filters, DGS filters , low-pass filter, band-pass filter
Resumo:
The photometric determination of ascorbic acid with the "E. E. L. portable colorimeter" can be carried" out rapid and conveniently using either 3% HPO3 or 0,4% (COOH) 2 as protective agent. The standards would contain from 2 to 20 micrograms of ascorbic acid per ml of metaphosphoric or oxalic acid solutions. We mix 10 ml of these solutions with 3 ml of the adequate citrate buffer solutions, and we pipet 5 ml of the resulting mixture to a matched test tube containing 5 ml of sodium - 2,6 - dichlorobenzenoneindophenol (80 mg per liter); then we shake well and after 15 seconds the extintion is read using green filter. The readings are subtracted from the blank one. Designating the differences by x and the concentrations of ascorbic acid/ml in the standards by y, we get, with the acid of the method of least squares, the following regression equations: for the metaphosphoric acid Y = 0,543x + 0,629 for the oxalic acid Y = 0,516x + 0,422, which permit, by interpolating, the determination of the ascorbic acid content in plant materials.
Resumo:
Im Rahmen eines Projektes im Fraunhofer IZI wurden Hirninfarkte künstlich im Gehirn von Versuchsmäusen ausgelöst und diese mittels Magnetresonanztomographie gemessen und visualisiert. Dabei entstanden DICOM-Dateien, die mit Bildverarbeitungssoftware Fiji, ImageJ und 3D Slicer bearbeitet wurden. Mit Matlab sollen nun Programme geschrieben werden, die die Bearbeitungsschritte automatisieren und vereinfachen. In der Arbeit werden verschiedene Segmentierungsformen und Filter vorgestellt. In die Quellcodes wurden Schwellenwertverfahren und Verfahren der Aktiven Konturen implementiert. Ziel ist es, den Bildanteil des Infarkts zu separieren (segmentieren), diesen danach zu binarisieren um danach die Pixelanzahl ermitteln zu können. Aus der Anzahl der Pixel kann dann das Volumen des Schlaganfalles berechnet werden.
Resumo:
The present paper colligates the notions acquired in previous investigations, already published, and new observations upon diseases of the psittacidae, liable to be confused with psittacosis of parrots. The author calls attention to the indifference with regard to this question shown by investigators, even by those who dealt with the study of this disease on the occasion of the latest outbreak of psittacosis, in flagrant contrast with the researches upon the alterations induced by pathogenic agents of other diseases transmissible to man, when these agents pass through animals or when the latter are depositaries of the virus. This remark considerably enhances the importance of the presence paper from a hygienic and epidemiologic point of view, representing moreover a contribution to general knowledge and to veterinary medicine. The researches carried out since the appearance of the latest outbreak of psittacosis,-which occurred simultaneously with an epizooty in parrots lodged in aviary of the park of Agua Branca (Directory of Animal Industry of the State São Paulo)-led to the verification of the frequent existence in these animals of various diseases liable to be confused with psittacosis. These diseases are due to two kinds of pathogenic agents: virus and bacteria. In the first group there are to be found the diseases occasioned by the virus of human psittacosis, discovered by Western, Bedson and Simpson, and the disease me with in parrots coming from traders in S. Paulo. The infections by bacteria of the genus Salmonella and by those of other genera belong to the second group. As differential characters of the two infections due to virus, delineated on the strength of notions drawn from a detailed experimental study and from the literature on this subject, the following are given: ¹ Samples of our virus were sent, for comparison, to various investigators of psittacosis. Amongst them, Prof. M. Rivers acceded to our request; he found its nature to be different from that of the virus of psittacosis studiedby him. We are very much obliged to him for the attention he paid to this verification. Virus of psittacosis - Infectiousness: man, monkey, rabbit, mouse, hen, canary. Neurotropic affinity. Inclusions: small, protoplasmic. Exsiccation: the virus has good power of preservation. Symptoms: inactivity, drowsiness, frequent diarrhoea, oculo-nasal discharge and cough, coma. Duration: 4 to 5 days. Bodily lesions: congestion of intestines, splenomegaly. Virus of S. Paulo - Infects only psittacidae, particularly those of the genus Amazona. No localization in the nervous system. Large, nuclear. Is rapidly destroyed. Inactivity, inappetency, adynamia (drooping of the wings, indifference, leaning its beak against the bars of the cage in order not to fall down); profuse diarrhoea, of whitish stools, at times enterorrhagia; prolonged coma. 2 to 8 days. Foci of yellowish necrosis in liver, spleen and lung. At times, congestion of intestines. Characteristic features common to the two viruses.-They act in great dilutions, filter through tight candles though being partly retained, are preserved under glycerine or Bedson's solution, are stable at 55°C. heat and are destroyed by physical and chemical agents. Both virus diseases are very seldom met with in psittacidae: only once, amongst numberless sick parrots, the author met with a disease of the virus differring from that of psittacosis. This disease, greatly transmissible to man, ought to be more frequent, if it were common in parrots. On the contrary, bacteria cause diseases in these animals with great frequency, presenting variable characters, from a severe epizootic form, rapidly mortal, to ambulatory or silent forms, for the most part developing towards a cure or assuming a chronic character. Amongst the bacteria which cause the infection of this group the salmonellae predominate and amongst them the bacterium discovered by Nocard, as well as a species which in the course of this study is characterized under the name of Salmonella nocardi. The author believes that in the epizooty from which Nocard isolated his bacterium there was association of the virus-disease inducing the epizooty of that epoch in Paris with the bacterial disease, as must have happened in Argentina, where the disease was transmitted to man, and Santillan, according to Barros, isolated from the sick parrots bacteria of the genus Salmonella. The diseases of the two groups, that due to virus and that due to bacteria, are differentiated: Virus-diseases - Evolution: rapid, nearly always followed by death. Symptoms: sadness, profuse diarrhoea, of whitish stools, at times enterorrhagia, complete inappetency, adynamia, indifference, prolonged coma. Clinical forms: acute and subacute. Lesions: Foci of necrosis in liver and spleen without cellular reaction around the focus, yellow liver, multiple serositis. Presence of protoplasmic or nuclear granulations. Bacteriology: Complete lack or inconstant presence of bacteria in the organs and blood. Infectiousness of the organs and blood after filtration: positive. Bacterial diseases - Varies from one week to a month or more, not always fatal. Sadness, partial inappetency, tremblings, intensive thirst, mucous or mucosanguineous diarrhoea, lack of adynamia (reacts to stimulations and moves well at any time of the disease, though showing little disposition to locomotion), soiling of feathers. Frustrate, acute, subacute and chronic. Hepatic and intestinal cogestion, foci of necrosis in liver, spleen and lung with cellular reaction around the focus. Lack of granulations. Constant presence of bacteria in the organs and blood. Negative. The analysis of the litterature shows that the characteristic features of the diseases in parrots referred to parrot psittacosis, more frequently approach the bacterial diseases here described of these animals, a hypothesis which is reinforced by the observation of the greater frequency of infections...
Resumo:
The following is a summary of the studies made on the development of Plasmodium gallinaceum sporozoites inoculated into normal chicks. Initially large numbers of laboratory reared Aëdes aegypti were fed on pullets heavily infected with gametocytes. Following the infectious meal the mosquitoes were kept on a diet of sugar and water syrup until the appearance of the sporozoites in the salivary glands. Normal chicks kept in hematophagous arthropod proof cages were then inoculated either by bite of the infected mosquitoes or by subcutaneous inoculations of salivary gland suspensions. By the first method ten mosquitoes fed to engorgement on each normal chick and were then sacrificed immediately afterwards to determine the sporozoite count. By the second method five pairs of salivary glands were dissected out at room temperature, triturated in physiological saline and inoculated subcutaneously. The epidermis and dermis at the site of inoculation were excised from six hours after inoculation to forty eight hours after appearance of the parasites in the blood stream and stretched out on filter paper with the epithelial surface downward. The dermis was then curretted. Slides were made of the scrapings consisting of connective tissue and epithelial cells of the basal layers which were fixed by metyl alcohol and stained with Giemsa for examination under the oil immersion lens. Skin fragments removed from normal chicks and from regions other than the site of inoculation in the infected chicks were used as controls. In these, only the normal histological aspect was ever encountered. In the biopsy made at the earliest period following inoculation clearly defined elongated forms with eight or more chromatin granules arranged in rosary formation were found. The author believes these to be products of the sporozoite evolution. Search for transition stages between these forms and sporozoites is planned in biopsies to be taken immediately following inoculation and at given intervals up to the six hour period. 1.) 6 and 12 hour periods. The bodies referred to above found in the first period in great abundance, apparently in proportion to the large numbers of sporozoites inoculated, were perceptibly reduced in numbers in the second period. 2.) 18 hour period. Only one biopsy was examined. This presented a binuclear body shown in Fig. 1, having a more or less hyaline protoplasm staining an intense blue and a narrow vacuole delimiting the cell boundaries. The two chromatin grains were quite large presenting a clearly defined nuclear texture. 3.) 24 hour period. A similar body to that above (Fig. 2) was seen in the only preparation examined. 4.) 60 hour period. The exoerythrocytic schizonts were found more frequently from this period onward. Several such were found no longer to contain the previously described vacuoles (Fig. 3). 5.) 84 hour period. Cells bearing eight or more schizonts were frequently encountered here. That these are apparently not bodies in process of division may be seen in Fig. 4. From this time onward small violet granules similar to volutine grains appeared constantly in the schizont nucleus and protoplasm. These are definitely not hemozoin. The above observations fell within the incubation period as repeated examinations of the peripheral and visceral blood were negative. Exoery-throcytic parasites also were never encountered in the viscera at this time. Exoerythrocytic schizonts searched for at site of inoculation 1, 24 and 48 hours after the incubation period were present in large number at all three times with apparent tendency to diminish as the number within the blood stream increased. Many of them presented the violet granules mentioned above. The appearance of the chromatin and the intensity of staining of the protoplasm varied from body to body which doubtless corresponds to the evolutionary stage of each. This diversity of aspect may frequently be seen in the parasites of the same host cell (Fig. 5.). These findings lend substance to the theory that the exoerythrocytic forms are the link between the sporozoites and the pigmented parasites of the red blood corpuscles. The explanation of their continued presence in the organism after infection of the blood stream takes place and their presence in cases infected by the inoculation blood does not come within the scope of this work. Large scale observations shortly to be undertaken will be reported in more detail particularly observations on the first evolutionary phases of the sporozoite within the organism of the vertebrate host.
Resumo:
A critical study of three methods for the determination of lactic acid (EDWARDS, MENDEL & GOLDSCHEIDER, MILLER & MUNTZ) is presented and some modifications are proposed. It was shown t hat more accurate results could be obtained with Edward's technic when an Iena glass filter is connected with the absorption tube. Before the dropping of the permanganate solution it is necessary to pass a current of air through the reaction flask to avoid the oxidation of the non-lactic acid substances which interfere with the reaction. The absorption tube must be maintained at 18°C during the destillation and the titration of the bisulphite binding aldehyde at 4°C. When the sample contains more than 5 mg it is useful to work with greater quantities of the bisulphite. More permanganate is consumed when the lactic acid concentration is higher. The sensivity of the method permits the titration of 0.04 mg to 5 mg of lactic acid in the sample. The calculated error of the method gave 0.018 % and the normal values for blood determined in 20 human cases averaged 10.30 mg per 100 ml (Table VI). MENDEL and GOLDSCHEIDER'S method was modified in the following details: Somogyis deproteinization was performed instead metaphosphoric acid as in the original method; to avoid the evaporation of the acetic aldehyde during the heating time with sulfuric acid a special glass stopped tube is proposed (Fig. 2). The reaction with sulfuric acid and veratrol is performed in an ice bath. Blood proteins precipitants were tried and Somogyi's lattest tecnic showed better results (Table V). Colorimetric readings were done in the PULFRICH photometer using filter S 53 and a 10 mm cup. The method is accurate within an error of 0.23 % and samples of 5 to 70 microg. could be easily determined. Normal values for human blood averaged 10.78 mg per 100 ml. More accurate results were obtained with the technic of MILLER & MUNTZ. Slight modifications were introduced: deproteinization with copper sulfate and sodium tungstate; satured p-hydroxydiphenyl solution according to KOENEMANN which is stable for 5 months when stored in the ice-box. Using the PULFRICH step-photometer the error is 0.17% with samples varying from 0.1 to 10 microg. of lactic acid. The filter employed was S 57 with the 5 mm cup. The method was adapted to 0.1 ml of blood. Normal values for human blood gave an average of 10.58 mg per 100 ml.
Resumo:
The author has studied the influence of acetylcholine solutions directly applied on the motor cortex of dogs, cats monkeys and rabbits. For this purpose small squares of filter paper were soaked in the acetylcholine solution and soon afterwards laid on the motor cortex. Solutions varying from 0,2 to 10 per cent have been experimented. It has been shown that local application of the solutions on the motor points, previously localized by induction coil, produced motor reactions. It has been found, in the dogs that 10 per cent acetylcholine solutions cause localized muscular twitchings (clonus) in almost all the animals experimented. Generalised epileptiform convulsions were obtained in44,4% of the dogs. Convulsions were also obtained by employing 1 per cent solution of acetylcholine. Definite response has been obtained with 0,2 per cent solution. Failure of motor action, pointed out by other authors, has been related to the use of anesthetics. Convulsions were easily produced by rapid light mechanical stimulations of the skin covering the muscles in conection with the excited motor point, and the application on the motor point of acetylcholine. The results on monkeys can be summarized as follows. Two species of monkeys were experimented: Cebus capucinus and Macaca mulata. In the monkeys C. capucinus generalised convulsive reactions were induced with actylcholine solutions in a concentration as low as 0,5 per cent. Motor reaction or convulsive seizeres were obtained in seven of the eight monkeys used. Three monkeys M. mulata were stimulated with 10 per cent acetylcholine solution but only localized muscular contraction hae been observed. Similar results has been obtained on the motor cortex of cats and rabbits. One of the three cats employed has shown epileptiform convulsions and the remaining only localized muscular contractions. In the rabbits muscular twitchings have been also induced. The sensitizing power of eserine on the action of acetylcholine has been also searched. The results indicate that a previous application of eserine solution on the motor center, potentiates the action of acetylcholine. The intensity of the muscular twitchings is greater than the obtained before the application of the eserine solution. Generalised epileptiform convulsions sometimes appeared following the use of lower concentrations of acetylcholine than those previously employed. Experiments have been carried out by injecting eserine and prostigmine by parenteral route. A dosis dufficient for induce small muscular tremors did not enhance obviously the motor effects produced by the application of the acetylcholine solutions on the motor cortex. From seven dogs experimented, all previously tested for convulsive seiruzes by application of 1 and 10 per cent acetylcholine solution with negative results, only one has shown epileptiform convulsions after the injection of prostigmine. Morphine has also been tested as facilitating substance for convulsions induced by acetylcholine. Six from the nine dogs submitted to the experiments, developed epileptiform seizures after injection of morphine and stimulation of the motor cortex with acetylcholine. (Table IV). In another series of experiments atropine and nicotine have been studied as for to their action on the motor effects of acetylcholine. Nicotine has a strong convulsant action, even when employed in very high concentration. Since a depressant effect has not appeared even by the applications of high concentrations of nicotine in the motor corteõ of dogs, unlike the classical observations for the autonomus nervous system, it was not possible to verify the action of acetylcholine on a motor center paralised by nicotine. It is important to not that the motor phenomena observed after the first aplication of acetylcholine, can desappear by the renewal of the pieces of filter paper soaked in the acetylcholine solution. Atropine, either applied on the motor point in low concentration, or injected in sufficient amount for inhibiting the muscarinic effects of acetylcholine on the autonomous nervous system, did not prevent the motor reactions of acetylcholine on the cerebral cortex.
Resumo:
It is well known that the culture media used in the presumptive diagnosis of suspiciuous colonies from plates inoculated with stools for isolation of enteric organisms do not always correctly indicate the major groups of enterobacteria. In an effort to obtain a medium affording more exact indications, several media (1-9) have been tested. Modifications of some of these media have also been tested with the result that a satisfactory modification of Monteverde's medium was finaly selected. This proved to be most satisfactory, affording, as a result of only one inoculation, a complete series of basic indications. The modification involves changes in the formula, in the method of preparation and in the manner of storage. The formulae are: A. Thymol blue indicator: NaOH 0.1/N .............. 34.4 ml; Thymol blue .............. 1.6 g; Water .................... 65.6 ml. B. Andrade's indicator. C. Urea and sugar solution: Urea ..................... 20 g; Lactose ................... 30 g; Sucrose ................... 30 g; Water .................... 100 ml. The mixture (C.) should be warmed slightly in order to dissolve the ingredients rapidly. Sterilise by filtration (Seitz). Keep stock in refrigeratior. The modification of Monteverde's medium is prepared in two parts. Semi-solid part - Peptone (Difco) 2.0 g; NaCl 0.5 g; Agar 0.5 g; Water 100.0 ml. Boil to dissolve the ingredients. Adjust pH with NaOH to 7.3-7.4. Boil again for precipitation. Filter through cotton. Ad indicators "A" 0.3 ml and "B" 1.0 ml. Sterilise in autoclave 115ºC, 15 minutes in amounts not higher than 200 ml. Just before using, add solution "C" asseptically in amounts of 10 ml to 200 ml of the melted semi-solid medium, maintained at 48-50ºC. Solid part - Peptone (Difco) 1.5 g; Trypticase (BBL) 0.5 g; Agar 2.0 g; Water 100,00 ml. Boil to dissolve the ingredients. Adjust pH with NaOH to 7.3-7.4. Boils again. Filter through cotton. Add indicators "A" 0.3 ml and "B" 1.0 ml; ferrous ammonium sulfate 0.02 g; sodiun thiosulfate 0.02 g. Sterilise in autoclave 115ºC, 15 minutes in amounts not higher than 200 ml. Just before using, add solution "C" asseptically in amounts of 10 ml to 200 ml of the melted solid medium, maintained at 48-50ºC. Final medium - The semi-solid part is dispensed first (tubes about 12 x 120 mm) in 2.5 ml amounts and left to harden at room temperature, in vertical position. The solid part is dispensed over the hardened semi-solid one in amounts from 2.0 ml to 2.5 ml and left to harden in slant position, affording a butt of 12 to 15 mm. The tubes of medium should be subjected to a sterility test in the incubator, overnight. Tubes showing spontaneous gas bubbles (air) should then be discarded. The medium should be stored in the incubator (37ºC), for not more than 2 to 4 days. Storage of the tubes in the ice-box produces the absorption of air which is released as bubbles when the tubes are incubated at 37ºC after inoculation. This fact confirmed the observation of ARCHAMBAULT & McCRADY (10) who worked with liquid media and the aplication of their observation was found to be essential to the proper working conditions of this double-layer medium. Inoculation - The inoculation is made by means of a long straight needle, as is usually done on the triple sugar, but the needel should penetrate only to about half of the height of the semi-solid column. Indol detection - After inoculation, a strip of sterelized filter papaer previously moistened with Ehrlich's reagent, is suspended above the surface of the medium, being held between the cotton plug and the tube. Indications given - In addition to providing a mass of organisms on the slant for serological invetigations, the medium gives the following indications: 1. Acid from lactose and/or sucrose (red, of yellowsh with strains which reduce the indicators). 2. Gas from lactose and/or sucrose (bubbles). 3. H[2]S production, observed on the solid part (black). 4. Motility observed on the semi-solid part (tubidity). 5. Urease production, observed on solid and semi-solid parts (blue). 6. Indol production, observed on the strip of filter paper (red or purplish). Indol production is not observed with indol positive strains which rapidly acidify the surface o the slant, and the use of oxalic acid has proved to give less sensitive reaction (11). Reading of results - In most cases overnight incubation is enough; sometimes the reactions appear within only a few hours of incubation, affording a definitive orientation of the diagnosis. With some cultures it is necessary to observe the medium during 48 hours of incubation. A description showing typical differential reaction follows: Salmonella: Color of the medium unchanged, with blackening of the solid part when H[2]S is positive. The slant tends to alkalinity (greenish of bluish). Gas always absent. Indol negative. Motility positive or negative. Shigella: Color of the medium unchanged at the beginning of incubation period, but acquiring a red color when the strain is late lactose/sucrose positive. Slant tending to alkalinity (greenish or purplish). Indol positive or negative. Motility, gas and H[2]S always negative. Proteus: Color of the medium generally changes entirely to blue or sometimes to green (urease positive delayed), with blackening of solid part when H[2]S is positive. Motility positive of negative. Indol positive. Gas positive or negative. The strains which attack rapidly sucrose may give a yellow-greenish color to the medium. Sometimes the intense blue color of the medium renders difficult the reading of the H[2]S production. Escherichiae and Klebsiellae: Color of the medium red or yellow (acid) with great and rapid production of gas. Motility positive or negative. Indol generally impossible to observe. Paracoli: Those lactose of sucrose positive give the same reaction as Esherichia. Those lactose or sucrose negatives give the same reactions as Salmonellae. Sometimes indol positive and H[2]S negative. Pseudomonas: Color of the medium unchanged. The slant tends to alkalinity. It is impossible to observe motility because there is no growth in the bottom. Alkaligenes: Color of the medium unchanged. The slant tends to alkalinity. The medium does not alter the antigenic properties of the strains and with the mass of organisms on the slant we can make the serologic diagnosis. It is admitted that this medium is somewhat more laborious to prepare than others used for similar purposes. Nevertheless it can give informations generally obtained by two or three other media. Its use represents much saving in time, labor and material, and we suggest it for routine laboratory work in which a quick presumptive preliminary grouping of enteric organisms is needed.