982 resultados para phenol oxidase
Resumo:
The chemical composition of the ethanolic extract of the leaves and roots from Philodendron imbe Schott was investigated. The main constituents isolated the leaves were beta-sitosterol one polyprenoid hexaprenol, and 6beta-hydroxy-stigmast-4-en-3-one, a steroid, not yet reported in the Philodendron gender. A mixture of constituents, namely, ethyl myristoleate, alpha-bisabolol, ethyl isopalmitate, 3-octadecenyl-phenol and the major component ethyl palmitate, were isolated from the roots. Structure elucidation of these secondary metabolites was accomplished by spectrometric analysis, including 1D and 2D NMR experiments such as ¹H, ¹H and ¹H,13C-COSY.
Resumo:
Glucose-oxidase (GOD), suffers conformational change during freeze-drying. In order to determine the protection level granted by amorphous matrices (AM) of saccharose, maltose, trehalose and their combinations, the thermal inactivation constants (K D) of GOD trapped in these systems were determined. For its evaluation, GOD samples were balanced at different water activities and heated up to 30, 50 and 70 ºC. The best AM found for GOD stability was saccharose-trehalose (5/10% p/v). The K D values (K D.10-4) at a w = 0.0 were 3 at 30 ºC and 6 at 70 ºC. For non-protected GOD under the same conditions these values were 48 at 30 ºC and 257 at 70 ºC.
Resumo:
The main goal of this work was to study the biodegradation of phenol in batch mode by a filamentous fungus isolated from a contaminated site in Southern Brazil. A better performance was obtained by previous adaptation of the microorganism to the toxic chemical. A 2³ experimental design was proposed and it could be observed total phenol degradation in 72 h using 500 mg L-1 glucose, inoculum of 20% and agitation of 200 rpm, resulting a biodegradation rate of 3.76 mg L-1 h-1. In relation to phenol tolerance, Aspergillus sp. LEBM2 was able to consume up to 989 ± 15 mg L-1.
Resumo:
The immersion enthalpy of activated carbon in 3-chlorophenol solutions, of 100 mg L-1, is determined at different pH values between 3 and 11 with results between 37.6 and 21.2 J g-1. The 3-chlorophenol adsorbed quantities on the activated carbon during the calorimetric experience, are between 1.13 and 2.19 mg g-1, for different pH values of the solution. The 3-chlorophenol adsorbed quantity and the immersion enthalpy decrease by increasing of the pH solution, while increasing the adsorbed quantity increases the immersion enthalpy value.
Resumo:
The main goal of this research was the preparation and use of a organophilic smectitic clay able to promoting the adsorption of phenol. In this work was used a natural clay called Chocolate, from Campina Grande - PB (Brazil). The natural clay was treated with a solution of sodium carbonate. After this the sodium clay was treated with quaternary ammonium salt. The adsorptive study was conducted by different values of pH and temperature. The results showed a better performance in adsorptive at pH 7 and temperature 30 ºC, with removal of more than 80% of phenol.
Resumo:
In this work the potentiality of photo-Fenton processes were investigated toward the degradation of aromatic hydrocarbons (BTXs) from water contaminated with gasoline. The main results demonstrated that BTXs can be quickly degraded by photo-Fenton process assisted by solar or artificial UV-A radiation, degradation that leads to generation of characteristic phenolic transient species (ie. phenol, hydroquinone and catechol). In the treatment of contaminated water by photo-Fenton processes assisted by solar light, complete BTXs removal was observed in reaction times of about 5 min. Mineralization of about 90% was also observed by applying a multiple H2O2 addition system.
Resumo:
The phytochemical investigation of the ethanol extract from the aerial parts of Blainvillea rhomboidea (Asteraceae) resulted in the isolation and characterization of 8β-tigloyloxy-grazielia acid, together with the flavonoids derrone, acacetin, luteolin and luteolin 7-methyl ether, and p-(1-methyl-ethan-1-ol)-phenol. The structures of all compounds were determined by spectroscopic methods (¹H and 13C NMR and HREIMS) and comparison with published spectral data. The flavonoids luteolin and 7-O-metyl-luteolin, isolated from the active dichloromethane fraction, showed moderate cytotoxic activity.
Resumo:
A sensitive RP-HPLC method with UV detection successfully measured phenol(s) in an ointment containing 3% Stryphnodendron adstringens extract. Chromatography used acetonitrile (0.05% trifluoroacetic acid):water (0.05% trifluoroacetic acid) (v/v), flow rate 0.8 mL min-1. Quantitation was accomplished by the external-standard method. Linearity for 2.00 to 16.00 μg mL-1 (gallic acid) and 1.14 to 18.24 μg mL-1 (gallocatechin) was established. Intra- and inter-day precision levels were under 5%. LOD and LOQ were 0.231 and 0.770 μg mL-1 (gallic acid) and 0.151 and 0.504 μg mL-1 (gallocatechin), respectively. Determination of phenols was unaffected by product excipients.
Resumo:
The restricted availability of water sources suitable for consumption and high costs for obtaining potable water has caused an increase of the conscience concerning the use. Thus, there is a high demand for "environmentally safe methods" which are according to the principles of Green Chemistry. Moreover, these methods should be able to provide reliable results for the analysis of water quality for various pollutants, such as phenol. In this work, greener alternatives for sample preparation for phenol determination in aqueous matrices are presented, which include: liquid phase microextraction, solid phase microextraction, flow analysis, cloud point extraction and aqueous two-phase systems.
Resumo:
A method based on enzymatic activities was developed using three enzymes (glycerokinase, glycerol-3-phosphate oxidase and peroxidase) and colorimetric detection for the determination of glycerol in biodiesel. The enzymatic conversion of glycerol produces H2O2 that is eliminated by the action of peroxidase, an oxygen acceptor and 4- aminoantipirine, producing water and a colored compound, which was analyzed. This method showed good linear correlation coefficient (r = 0.9937) in the concentration range of 4.95 x 10-5 to 3.96 x 10-4% (w/w) and had experimental limits of detection and quantitation of 7.10 x 10-6 and 2.10 x 10-5% (w/w), respectively.
Resumo:
This study describes the chemical investigation of the ethyl acetate fraction obtained from the hydroethanolic extract of the xylopodium of Cochlospermum regium (Mart. & Schr.) Pilger, which has been associated with antimicrobial activity. Phytochemical investigation produced seven phenol derivatives: ellagic acid, gallic acid, dihydrokaempferol, dihydrokaempferol-3-O-β-glucopyranoside, dihydrokaempferol-3-O-β-(6"-galloyl)-glucopyranoside, pinoresinol, and excelsin. It also contained two triacylbenzenes, known as cochlospermines A and B. The hydroethanolic extract and its fractions exhibited antimicrobial activity (0.1 mg/mL) against Staphylococcus aureus and Pseudomonas aeruginosa. Gallic acid showed activity against S. aureus. Dihydrokaempferol-3-O-β-(6"-galloyl)-glucopyranoside is reported here for the first time in the literature.
Resumo:
This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl)-benzamide (0.019%) and N,4-dihydroxy-N-(2'-hydroxyethyl)-benzeneacetamide (0.023%). These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl)-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl)-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl)-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family.
Resumo:
Activated carbon was produced from the water hyacinth (CAA) by impregnation with ZnCl2 (1:2), followed by pyrolysis at 700 ºC, under N2. CAA was used for the adsorption of phenol, m-cresol and o-cresol from aqueous solutions, using batch adsorption. The effects of contact time, pH, temperature and concentration on sorption were investigated. Adsorption capacity, calculated using the Langmuir model proved to be dependent on temperature, reaching values of 163.7, 130.2 and 142.3 mg g-1 for phenol, m-cresol and o-cresol, respectively, at 45 ºC. Thermodynamic data at the solid-liquid interface suggests an endothermic, spontaneous and environmentally-friendly process.
Resumo:
(E)-2-{[(2-Aminopyridin-3-yl)imino]-methyl}-4,6-di-tert-butyl-phenol ( 3: ), a ligand containing an intramolecular hydrogen bond, was prepared according to a previous literature report, with modifications, and was characterized by UV-vis, FTIR, ¹H-NMR, 13C-NMR, HHCOSY, TOCSY and cyclic voltammetry. Computational analyses at the level of DFT and TD-DFT were performed to study its electronic and molecular structures. The results of these analyses elucidated the behaviors of the UV-vis and electrochemical data. Analysis of the transitions in the computed spectrum showed that the most important band is primarily composed of a HOMO→LUMO transition, designated as an intraligand (IL) charge transfer.
Resumo:
This work aims to (1) produce and characterize the flour obtained from two varieties of canihua, cupi and illpa-inia, and (2) evaluate the ability of these flours to form biofilms. The flours produced contain proteins, starches, lipids, organic substances containing phenol groups, and high percentages of unsaturated fatty acids. Films produced from the illpa variety presented lower water vapor permeability and larger Young’s modulus values than the films formed from the cupi variety. Both films were yellowish and displayed a high light blocking ability (as compared with polyethylene films), which can be attributed to the presence of phenolic compounds. Furthermore, they showed lesser solubility and water permeability than other polysaccharide films, which may be the result of the higher protein (12%–13.8%) and lipid (11%) contents in canihua flours, as well as the formation of a larger number of S–S bonds. On the other hand, these films presented a single vitreous transition temperature at low temperatures (< 0 °C), crystallization of the A and Vh types, and an additional diffraction peak at 2 = 7.5º, ascribed to the presence of essential fatty acids in canihua flour. Canihua flour can form films with adequate properties and shows promise for potential applications in food packaging, because it acts as a good barrier to incident ultraviolet light.