927 resultados para parcel-scale spatial analysis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although the Unified Huntington's Disease Rating Scale (UHDRS) is widely used in the assessment of Huntington disease (HD), the ability of individual items to discriminate individual differences in motor or behavioral manifestations has not been extensively studied in HD gene expansion carriers without a motor-defined clinical diagnosis (ie, prodromal-HD or prHD). To elucidate the relationship between scores on individual motor and behavioral UHDRS items and total score for each subscale, a nonparametric item response analysis was performed on retrospective data from 2 multicenter longitudinal studies. Motor and behavioral assessments were supplied for 737 prHD individuals with data from 2114 visits (PREDICT-HD) and 686 HD individuals with data from 1482 visits (REGISTRY). Option characteristic curves were generated for UHDRS subscale items in relation to their subscale score. In prHD, overall severity of motor signs was low, and participants had scores of 2 or above on very few items. In HD, motor items that assessed ocular pursuit, saccade initiation, finger tapping, tandem walking, and to a lesser extent, saccade velocity, dysarthria, tongue protrusion, pronation/supination, Luria, bradykinesia, choreas, gait, and balance on the retropulsion test were found to discriminate individual differences across a broad range of motor severity. In prHD, depressed mood, anxiety, and irritable behavior demonstrated good discriminative properties. In HD, depressed mood demonstrated a good relationship with the overall behavioral score. These data suggest that at least some UHDRS items appear to have utility across a broad range of severity, although many items demonstrate problematic features.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study analyzes the regional spatial dynamics of the New York region for a period of roughly twenty years and places the effects of the 9/11 terrorist attacks in the context of longer-term regional dynamics. The analysis reveals that office-using industries are still heavily concentrated in Manhattan despite ongoing decentralization in many of these industries over the last twenty years. Financial services tend to be highly concentrated in Manhattan whereas administrative and support services are the least concentrated of the six major office-using industry groups. Although office employment has been by and large stagnant in Manhattan for at least two decades, growth of output per worker has outpaced the CMSA as well as the national average. This productivity differential is mainly attributable to competitive advantages of office-using industries in Manhattan and not to differences in industry composition. Finally, the zip-code level analysis of the Manhattan core area yielded further evidence of the existence of significant spillover effects at the small-scale level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Whilst hydrological systems can show resilience to short-term streamflow deficiencies during within-year droughts, prolonged deficits during multi-year droughts are a significant threat to water resources security in Europe. This study uses a threshold-based objective classification of regional hydrological drought to qualitatively examine the characteristics, spatio-temporal evolution and synoptic climatic drivers of multi-year drought events in 1962–64, 1975–76 and 1995–97, on a European scale but with particular focus on the UK. Whilst all three events are multi-year, pan-European phenomena, their development and causes can be contrasted. The critical factor in explaining the unprecedented severity of the 1975–76 event is the consecutive occurrence of winter and summer drought. In contrast, 1962–64 was a succession of dry winters, mitigated by quiescent summers, whilst 1995–97 lacked spatial coherence and was interrupted by wet interludes. Synoptic climatic conditions vary within and between multi-year droughts, suggesting that regional factors modulate the climate signal in streamflow drought occurrence. Despite being underpinned by qualitatively similar climatic conditions and commonalities in evolution and characteristics, each of the three droughts has a unique spatio-temporal signature. An improved understanding of the spatio-temporal evolution and characteristics of multi-year droughts has much to contribute to monitoring and forecasting capability, and to improved mitigation strategies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using a model calibrated to Khao Yai National Park in Thailand, this paper highlights the importance of generating explicitly spatial and temporal data for developing management plans for tropical protected forests. Spatial and temporal cost-benefit analysis should account for the interactions between different land uses – such as the benefits of contiguous areas of preserved land and edge effects – and the realities of villagers living near forests who rely on extracted resources. By taking a temporal perspective, this paper provides a rare empirical assessment of the importance of quasi-option values when determining optimal management plans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The extended Canadian Middle Atmosphere Model is used to investigate the large-scale dynamics of the mesosphere and lower thermosphere (MLT). It is shown that the 4-day wave is substantially amplified in southern polar winter in the presence of instabilities arising from strong vertical shears in the MLT zonal mean zonal winds brought about by parameterized nonorographic gravity wave drag. A weaker 4-day wave in northern polar winter is attributed to the weaker wind shears that result from weaker parameterized wave drag. The 2-day wave also exhibits a strong dependence on zonal wind shears, in agreement with previous modeling studies. In the equatorial upper mesosphere, the migrating diurnal tide provides most of the resolved westward wave forcing, which varies semiannually in conjunction with the tide itself; resolved forcing by eastward traveling disturbances is dominated by smaller scales. Nonmigrating tides and other planetary-scale waves play only a minor role in the zonal mean zonal momentum budget in the tropics at these heights. Resolved waves are shown to play a significant role in the zonal mean meridional momentum budget in the MLT, impacting significantly on gradient wind balance. Balance fails at low latitudes as a result of a strong Reynolds stress associated with the migrating diurnal tide, an effect which is most pronounced at equinox when the tide is strongest. Resolved and parameterized waves account for most of the imbalance at higher latitudes in summer. This results in the gradient wind underestimating the actual eastward wind reversal by up to 40%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study focuses on the analysis of winter (October-November-December-January-February-March; ONDJFM) storm events and their changes due to increased anthropogenic greenhouse gas concentrations over Europe. In order to assess uncertainties that are due to model formulation, 4 regional climate models (RCMs) with 5 high resolution experiments, and 4 global general circulation models (GCMs) are considered. Firstly, cyclone systems as synoptic scale processes in winter are investigated, as they are a principal cause of the occurrence of extreme, damage-causing wind speeds. This is achieved by use of an objective cyclone identification and tracking algorithm applied to GCMs. Secondly, changes in extreme near-surface wind speeds are analysed. Based on percentile thresholds, the studied extreme wind speed indices allow a consistent analysis over Europe that takes systematic deviations of the models into account. Relative changes in both intensity and frequency of extreme winds and their related uncertainties are assessed and related to changing patterns of extreme cyclones. A common feature of all investigated GCMs is a reduced track density over central Europe under climate change conditions, if all systems are considered. If only extreme (i.e. the strongest 5%) cyclones are taken into account, an increasing cyclone activity for western parts of central Europe is apparent; however, the climate change signal reveals a reduced spatial coherency when compared to all systems, which exposes partially contrary results. With respect to extreme wind speeds, significant positive changes in intensity and frequency are obtained over at least 3 and 20% of the European domain under study (35–72°N and 15°W–43°E), respectively. Location and extension of the affected areas (up to 60 and 50% of the domain for intensity and frequency, respectively), as well as levels of changes (up to +15 and +200% for intensity and frequency, respectively) are shown to be highly dependent on the driving GCM, whereas differences between RCMs when driven by the same GCM are relatively small.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The theory of homogeneous barotropic beta-plane turbulence is here extended to include effects arising from spatial inhomogeneity in the form of a zonal shear flow. Attention is restricted to the geophysically important case of zonal flows that are barotropically stable and are of larger scale than the resulting transient eddy field. Because of the presumed scale separation, the disturbance enstrophy is approximately conserved in a fully nonlinear sense, and the (nonlinear) wave-mean-flow interaction may be characterized as a shear-induced spectral transfer of disturbance enstrophy along lines of constant zonal wavenumber k. In this transfer the disturbance energy is generally not conserved. The nonlinear interactions between different disturbance components are turbulent for scales smaller than the inverse of Rhines's cascade-arrest scale κβ[identical with] (β0/2urms)½ and in this regime their leading-order effect may be characterized as a tendency to spread the enstrophy (and energy) along contours of constant total wavenumber κ [identical with] (k2 + l2)½. Insofar as this process of turbulent isotropization involves spectral transfer of disturbance enstrophy across lines of constant zonal wavenumber k, it can be readily distinguished from the shear-induced transfer which proceeds along them. However, an analysis in terms of total wavenumber K alone, which would be justified if the flow were homogeneous, would tend to mask the differences. The foregoing theoretical ideas are tested by performing direct numerical simulation experiments. It is found that the picture of classical beta-plane turbulence is altered, through the effect of the large-scale zonal flow, in the following ways: (i) while the turbulence is still confined to K Kβ, the disturbance field penetrates to the largest scales of motion; (ii) the larger disturbance scales K < Kβ exhibit a tendency to meridional rather than zonal anisotropy, namely towards v2 > u2 rather than vice versa; (iii) the initial spectral transfer rate away from an isotropic intermediate-scale source is significantly enhanced by the shear-induced transfer associated with straining by the zonal flow. This last effect occurs even when the large-scale shear appears weak to the energy-containing eddies, in the sense that dU/dy [double less-than sign] κ for typical eddy length and velocity scales.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Global NDVI data are routinely derived from the AVHRR, SPOT-VGT, and MODIS/Terra earth observation records for a range of applications from terrestrial vegetation monitoring to climate change modeling. This has led to a substantial interest in the harmonization of multisensor records. Most evaluations of the internal consistency and continuity of global multisensor NDVI products have focused on time-series harmonization in the spectral domain, often neglecting the spatial domain. We fill this void by applying variogram modeling (a) to evaluate the differences in spatial variability between 8-km AVHRR, 1-km SPOT-VGT, and 1-km, 500-m, and 250-m MODIS NDVI products over eight EOS (Earth Observing System) validation sites, and (b) to characterize the decay of spatial variability as a function of pixel size (i.e. data regularization) for spatially aggregated Landsat ETM+ NDVI products and a real multisensor dataset. First, we demonstrate that the conjunctive analysis of two variogram properties – the sill and the mean length scale metric – provides a robust assessment of the differences in spatial variability between multiscale NDVI products that are due to spatial (nominal pixel size, point spread function, and view angle) and non-spatial (sensor calibration, cloud clearing, atmospheric corrections, and length of multi-day compositing period) factors. Next, we show that as the nominal pixel size increases, the decay of spatial information content follows a logarithmic relationship with stronger fit value for the spatially aggregated NDVI products (R2 = 0.9321) than for the native-resolution AVHRR, SPOT-VGT, and MODIS NDVI products (R2 = 0.5064). This relationship serves as a reference for evaluation of the differences in spatial variability and length scales in multiscale datasets at native or aggregated spatial resolutions. The outcomes of this study suggest that multisensor NDVI records cannot be integrated into a long-term data record without proper consideration of all factors affecting their spatial consistency. Hence, we propose an approach for selecting the spatial resolution, at which differences in spatial variability between NDVI products from multiple sensors are minimized. This approach provides practical guidance for the harmonization of long-term multisensor datasets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Anthropogenic emissions of heat and exhaust gases play an important role in the atmospheric boundary layer, altering air quality, greenhouse gas concentrations and the transport of heat and moisture at various scales. This is particularly evident in urban areas where emission sources are integrated in the highly heterogeneous urban canopy layer and directly linked to human activities which exhibit significant temporal variability. It is common practice to use eddy covariance observations to estimate turbulent surface fluxes of latent heat, sensible heat and carbon dioxide, which can be attributed to a local scale source area. This study provides a method to assess the influence of micro-scale anthropogenic emissions on heat, moisture and carbon dioxide exchange in a highly urbanized environment for two sites in central London, UK. A new algorithm for the Identification of Micro-scale Anthropogenic Sources (IMAS) is presented, with two aims. Firstly, IMAS filters out the influence of micro-scale emissions and allows for the analysis of the turbulent fluxes representative of the local scale source area. Secondly, it is used to give a first order estimate of anthropogenic heat flux and carbon dioxide flux representative of the building scale. The algorithm is evaluated using directional and temporal analysis. The algorithm is then used at a second site which was not incorporated in its development. The spatial and temporal local scale patterns, as well as micro-scale fluxes, appear physically reasonable and can be incorporated in the analysis of long-term eddy covariance measurements at the sites in central London. In addition to the new IMAS-technique, further steps in quality control and quality assurance used for the flux processing are presented. The methods and results have implications for urban flux measurements in dense urbanised settings with significant sources of heat and greenhouse gases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The political economy literature on agriculture emphasizes influence over political outcomes via lobbying conduits in general, political action committee contributions in particular and the pervasive view that political preferences with respect to agricultural issues are inherently geographic. In this context, ‘interdependence’ in Congressional vote behaviour manifests itself in two dimensions. One dimension is the intensity by which neighboring vote propensities influence one another and the second is the geographic extent of voter influence. We estimate these facets of dependence using data on a Congressional vote on the 2001 Farm Bill using routine Markov chain Monte Carlo procedures and Bayesian model averaging, in particular. In so doing, we develop a novel procedure to examine both the reliability and the consequences of different model representations for measuring both the ‘scale’ and the ‘scope’ of spatial (geographic) co-relations in voting behaviour.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Madden–Julian Oscillation (MJO) is the chief source of tropical intra-seasonal variability, but is simulated poorly by most state-of-the-art GCMs. Common errors include a lack of eastward propagation at the correct frequency and zonal extent, and too small a ratio of eastward- to westward-propagating variability. Here it is shown that HiGEM, a high-resolution GCM, simulates a very realistic MJO with approximately the correct spatial and temporal scale. Many MJO studies in GCMs are limited to diagnostics which average over a latitude band around the equator, allowing an analysis of the MJO’s structure in time and longitude only. In this study a wider range of diagnostics is applied. It is argued that such an approach is necessary for a comprehensive analysis of a model’s MJO. The standard analysis of Wheeler and Hendon (Mon Wea Rev 132(8):1917–1932, 2004; WH04) is applied to produce composites, which show a realistic spatial structure in the MJO envelopes but for the timing of the peak precipitation in the inter-tropical convergence zone, which bifurcates the MJO signal. Further diagnostics are developed to analyse the MJO’s episodic nature and the “MJO inertia” (the tendency to remain in the same WH04 phase from one day to the next). HiGEM favours phases 2, 3, 6 and 7; has too much MJO inertia; and dies out too frequently in phase 3. Recent research has shown that a key feature of the MJO is its interaction with the diurnal cycle over the Maritime Continent. This interaction is present in HiGEM but is unrealistically weak.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ∼11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ∼19,000 to ∼17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ∼13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ∼3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Flow in geophysical fluids is commonly summarized by coherent streams, for example conveyor belt flows in extratropical cyclones or jet streaks in the upper troposphere. Typically, parcel trajectories are calculated from the flow field and subjective thresholds are used to distinguish coherent streams of interest. This methodology contribution develops a more objective approach to distinguish coherent airstreams within extratropical cyclones. Agglomerative clustering is applied to trajectories along with a method to identify the optimal number of cluster classes. The methodology is applied to trajectories associated with the low-level jets of a well-studied extratropical cyclone. For computational efficiency, a constraint that trajectories must pass through these jet regions is applied prior to clustering; the partitioning into different airstreams is then performed by the agglomerative clustering. It is demonstrated that the methodology can identify the salient flow structures of cyclones: the warm and cold conveyor belts. A test focusing on the airstreams terminating at the tip of the bent-back front further demonstrates the success of the method in that it can distinguish fine-scale flow structure such as descending sting jet airstreams.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Little research so far has been devoted to understanding the diffusion of grassroots innovation for sustainability across space. This paper explores and compares the spatial diffusion of two networks of grassroots innovations, the Transition Towns Network (TTN) and Gruppi di Acquisto Solidale (Solidarity Purchasing Groups – GAS), in Great Britain and Italy. Spatio-temporal diffusion data were mined from available datasets, and patterns of diffusion were uncovered through an exploratory data analysis. The analysis shows that GAS and TTN diffusion in Italy and Great Britain is spatially structured, and that the spatial structure has changed over time. TTN has diffused differently in Great Britain and Italy, while GAS and TTN have diffused similarly in central Italy. The uneven diffusion of these grassroots networks on the one hand challenges current narratives on the momentum of grassroots innovations, but on the other highlights important issues in the geography of grassroots innovations for sustainability, such as cross-movement transfers and collaborations, institutional thickness, and interplay of different proximities in grassroots innovation diffusion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Within-field variation in sugar beet yield and quality was investigated in three commercial sugar beet fields in the east of England to identify the main associated variables and to examine the possibility of predicting yield early in the season with a view to spatially variable management of sugar beet crops. Irregular grid sampling with some purposively-located nested samples was applied. It revealed the spatial variability in each sugar beet field efficiently. In geostatistical analyses, most variograms were isotropic with moderate to strong spatial dependency indicating a significant spatial variation in sugar beet yield and associated growth and environmental variables in all directions within each field. The Kriged maps showed spatial patterns of yield variability within each field and visual association with the maps of other variables. This was confirmed by redundancy analyses and Pearson correlation coefficients. The main variables associated with yield variability were soil type, organic matter, soil moisture, weed density and canopy temperature. Kriged maps of final yield variability were strongly related to that in crop canopy cover, LAI and intercepted solar radiation early in the growing season, and the yield maps of previous crops. Therefore, yield maps of previous crops together with early assessment of sugar beet growth may make an early prediction of within-field variability in sugar beet yield possible. The Broom’s Barn sugar beet model failed to account for the spatial variability in sugar yield, but the simulation was greatly improved when corrected for early canopy development cover and when the simulated yield was adjusted for weeds and plant population. Further research to optimize inputs to maximise sugar yield should target the irrigation and fertilizing of areas within fields with low canopy cover early in the season.