957 resultados para numerical simulations
Conventional and Reciprocal Approaches to the Forward and Inverse Problems of Electroencephalography
Resumo:
Le problème inverse en électroencéphalographie (EEG) est la localisation de sources de courant dans le cerveau utilisant les potentiels de surface sur le cuir chevelu générés par ces sources. Une solution inverse implique typiquement de multiples calculs de potentiels de surface sur le cuir chevelu, soit le problème direct en EEG. Pour résoudre le problème direct, des modèles sont requis à la fois pour la configuration de source sous-jacente, soit le modèle de source, et pour les tissues environnants, soit le modèle de la tête. Cette thèse traite deux approches bien distinctes pour la résolution du problème direct et inverse en EEG en utilisant la méthode des éléments de frontières (BEM): l’approche conventionnelle et l’approche réciproque. L’approche conventionnelle pour le problème direct comporte le calcul des potentiels de surface en partant de sources de courant dipolaires. D’un autre côté, l’approche réciproque détermine d’abord le champ électrique aux sites des sources dipolaires quand les électrodes de surfaces sont utilisées pour injecter et retirer un courant unitaire. Le produit scalaire de ce champ électrique avec les sources dipolaires donne ensuite les potentiels de surface. L’approche réciproque promet un nombre d’avantages par rapport à l’approche conventionnelle dont la possibilité d’augmenter la précision des potentiels de surface et de réduire les exigences informatiques pour les solutions inverses. Dans cette thèse, les équations BEM pour les approches conventionnelle et réciproque sont développées en utilisant une formulation courante, la méthode des résidus pondérés. La réalisation numérique des deux approches pour le problème direct est décrite pour un seul modèle de source dipolaire. Un modèle de tête de trois sphères concentriques pour lequel des solutions analytiques sont disponibles est utilisé. Les potentiels de surfaces sont calculés aux centroïdes ou aux sommets des éléments de discrétisation BEM utilisés. La performance des approches conventionnelle et réciproque pour le problème direct est évaluée pour des dipôles radiaux et tangentiels d’excentricité variable et deux valeurs très différentes pour la conductivité du crâne. On détermine ensuite si les avantages potentiels de l’approche réciproquesuggérés par les simulations du problème direct peuvent êtres exploités pour donner des solutions inverses plus précises. Des solutions inverses à un seul dipôle sont obtenues en utilisant la minimisation par méthode du simplexe pour à la fois l’approche conventionnelle et réciproque, chacun avec des versions aux centroïdes et aux sommets. Encore une fois, les simulations numériques sont effectuées sur un modèle à trois sphères concentriques pour des dipôles radiaux et tangentiels d’excentricité variable. La précision des solutions inverses des deux approches est comparée pour les deux conductivités différentes du crâne, et leurs sensibilités relatives aux erreurs de conductivité du crâne et au bruit sont évaluées. Tandis que l’approche conventionnelle aux sommets donne les solutions directes les plus précises pour une conductivité du crâne supposément plus réaliste, les deux approches, conventionnelle et réciproque, produisent de grandes erreurs dans les potentiels du cuir chevelu pour des dipôles très excentriques. Les approches réciproques produisent le moins de variations en précision des solutions directes pour différentes valeurs de conductivité du crâne. En termes de solutions inverses pour un seul dipôle, les approches conventionnelle et réciproque sont de précision semblable. Les erreurs de localisation sont petites, même pour des dipôles très excentriques qui produisent des grandes erreurs dans les potentiels du cuir chevelu, à cause de la nature non linéaire des solutions inverses pour un dipôle. Les deux approches se sont démontrées également robustes aux erreurs de conductivité du crâne quand du bruit est présent. Finalement, un modèle plus réaliste de la tête est obtenu en utilisant des images par resonace magnétique (IRM) à partir desquelles les surfaces du cuir chevelu, du crâne et du cerveau/liquide céphalorachidien (LCR) sont extraites. Les deux approches sont validées sur ce type de modèle en utilisant des véritables potentiels évoqués somatosensoriels enregistrés à la suite de stimulation du nerf médian chez des sujets sains. La précision des solutions inverses pour les approches conventionnelle et réciproque et leurs variantes, en les comparant à des sites anatomiques connus sur IRM, est encore une fois évaluée pour les deux conductivités différentes du crâne. Leurs avantages et inconvénients incluant leurs exigences informatiques sont également évalués. Encore une fois, les approches conventionnelle et réciproque produisent des petites erreurs de position dipolaire. En effet, les erreurs de position pour des solutions inverses à un seul dipôle sont robustes de manière inhérente au manque de précision dans les solutions directes, mais dépendent de l’activité superposée d’autres sources neurales. Contrairement aux attentes, les approches réciproques n’améliorent pas la précision des positions dipolaires comparativement aux approches conventionnelles. Cependant, des exigences informatiques réduites en temps et en espace sont les avantages principaux des approches réciproques. Ce type de localisation est potentiellement utile dans la planification d’interventions neurochirurgicales, par exemple, chez des patients souffrant d’épilepsie focale réfractaire qui ont souvent déjà fait un EEG et IRM.
Resumo:
Ce mémoire porte sur l’étude des maxima de champs gaussiens. Plus précisément, l’étude portera sur la convergence en loi, la convergence du premier ordre et la convergence du deuxième ordre du maximum d’une collection de variables aléatoires gaussiennes. Les modèles de champs gaussiens présentés sont le modèle i.i.d., le modèle hiérarchique et le champ libre gaussien. Ces champs gaussiens diffèrent par le degré de corrélation entre les variables aléatoires. Le résultat principal de ce mémoire sera que la convergence en probabilité du premier ordre du maximum est la même pour les trois modèles. Quelques résultats de simulations seront présentés afin de corroborer les résultats théoriques obtenus.
Resumo:
Ce mémoire concerne la modélisation mathématique de l’érythropoïèse, à savoir le processus de production des érythrocytes (ou globules rouges) et sa régulation par l’érythropoïétine, une hormone de contrôle. Nous proposons une extension d’un modèle d’érythropoïèse tenant compte du vieillissement des cellules matures. D’abord, nous considérons un modèle structuré en maturité avec condition limite mouvante, dont la dynamique est capturée par des équations d’advection. Biologiquement, la condition limite mouvante signifie que la durée de vie maximale varie afin qu’il y ait toujours un flux constant de cellules éliminées. Par la suite, des hypothèses sur la biologie sont introduites pour simplifier ce modèle et le ramener à un système de trois équations différentielles à retard pour la population totale, la concentration d’hormones ainsi que la durée de vie maximale. Un système alternatif composé de deux équations avec deux retards constants est obtenu en supposant que la durée de vie maximale soit fixe. Enfin, un nouveau modèle est introduit, lequel comporte un taux de mortalité augmentant exponentiellement en fonction du niveau de maturité des érythrocytes. Une analyse de stabilité linéaire permet de détecter des bifurcations de Hopf simple et double émergeant des variations du gain dans la boucle de feedback et de paramètres associés à la fonction de survie. Des simulations numériques suggèrent aussi une perte de stabilité causée par des interactions entre deux modes linéaires et l’existence d’un tore de dimension deux dans l’espace de phase autour de la solution stationnaire.
Resumo:
À ce jour, les différentes méthodes de reconstruction des mouvements du plasma à la surface du Soleil qui ont été proposées présupposent une MHD idéale (Welsch et al., 2007). Cependant, Chae & Sakurai (2008) ont montré l’existence d’une diffusivité magnétique turbulente à la photosphère. Nous introduisons une généralisation de la méthode du Minimum Energy Fit (MEF ; Longcope, 2004) pour les plasmas résistifs. Le Resistive Minimum Energy Fit (MEF-R ; Tremblay & Vincent, 2014) reconstruit les champs de vitesse du plasma et la diffusivité magnétique turbulente qui satisfont à l’équation d’induction magnétique résistive et qui minimisent une fonctionnelle analogue à l’énergie cinétique totale. Une séquence de magnétogrammes et de Dopplergrammes sur les régions actives AR 9077 et AR 12158 ayant chacune produit une éruption de classe X a été utilisée dans MEF-R pour reconstruire les mouvements du plasma à la surface du Soleil. Les séquences temporelles des vitesses et des diffusivités magnétiques turbulentes calculées par MEF-R sont comparées au flux en rayons X mous enregistré par le satellite GOES-15 avant, pendant et après l’éruption. Pour AR 12158, nous observons une corrélation entre les valeurs significatives de la diffusivité magnétique turbulente et de la vitesse microturbulente pour les champs magnétiques faibles.
Resumo:
FPS is a more general form of synchronization. Hyperchaotic systems possessing more than one positive Lypaunov exponent exhibit highly complex behaviour and are more suitable for some applications like secure communications. In this thesis we report studies of FPS and MFPS of a few chaotic and hyperchaotic systems. When all the parameters of the system are known we show that active nonlinear control method can be efectively used to obtain FPS. Adaptive nonlinear control and OPCL control method are employed for obtaining FPS and MFPS when some or all parameters of the system are uncertain. A secure communication scheme based on MFPS is also proposed in theory. All our theoretical calculations are verified by numerical simulations.
Resumo:
This thesis Entitled Studies on Quasinormal modes and Late-time tails black hole spacetimes. In this thesis, the signature of these new theories are probed on the evolution of field perturbations on the black hole spacetimes in the theory. Chapter 1 gives a general introduction to black holes and its perturbation formalism. Various concepts in the area covered by the thesis are also elucidated in this chapter. Chapter 2 describes the evolution of massive, charged scalar field perturbations around a Reissner-Nordstrom black hole surrounded by a static and spherically symmetric quintessence. Chapter 3 comprises the evolution of massless scalar, electromagnetic and gravitational fields around spherically symmetric black hole whose asymptotes are defined by the quintessence, with special interest on the late-time behavior. Chapter 4 examines the evolution of Dirac field around a Schwarzschild black hole surrounded by quintessence. Detailed numerical simulations are done to analyze the nature of field on different surfaces of constant radius . Chapter 5is dedicated to the study of the evolution of massless fields around the black hole geometry in the HL gravity.
Resumo:
We study the static properties of the Little model with asymmetric couplings. We show that the thermodynamics of this model coincides with that of the Sherrington-Kirkpatrick model, and we compute the main finite-size corrections to the difference of the free energy between these two models and to some clarifying order parameters. Our results agree with numerical simulations. Numerical results are presented for the symmetric Little model, which show that the same conclusions are also valid in this case.
Resumo:
The mean-field theory of a spin glass with a specific form of nearest- and next-nearest-neighbor interactions is investigated. Depending on the sign of the interaction matrix chosen we find either the continuous replica symmetry breaking seen in the Sherrington-Kirkpartick model or a one-step solution similar to that found in structural glasses. Our results are confirmed by numerical simulations and the link between the type of spin-glass behavior and the density of eigenvalues of the interaction matrix is discussed.
Resumo:
We investigate the depinning transition occurring in dislocation assemblies. In particular, we consider the cases of regularly spaced pileups and low-angle grain boundaries interacting with a disordered stress landscape provided by solute atoms, or by other immobile dislocations present in nonactive slip systems. Using linear elasticity, we compute the stress originated by small deformations of these assemblies and the corresponding energy cost in two and three dimensions. Contrary to the case of isolated dislocation lines, which are usually approximated as elastic strings with an effective line tension, the deformations of a dislocation assembly cannot be described by local elastic interactions with a constant tension or stiffness. A nonlocal elastic kernel results as a consequence of long-range interactions between dislocations. In light of this result, we revise statistical depinning theories of dislocation assemblies and compare the theoretical results with numerical simulations and experimental data.
Resumo:
We explore the statistical properties of grain boundaries in the vortex polycrystalline phase of type-II superconductors. Treating grain boundaries as arrays of dislocations interacting through linear elasticity, we show that self-interaction of a deformed grain boundary is equivalent to a nonlocal long-range surface tension. This affects the pinning properties of grain boundaries, which are found to be less rough than isolated dislocations. The presence of grain boundaries has an important effect on the transport properties of type-II superconductors as we show by numerical simulations: our results indicate that the critical current is higher for a vortex polycrystal than for a regular vortex lattice. Finally, we discuss the possible role of grain boundaries in vortex lattice melting. Through a phenomenological theory we show that melting can be preceded by an intermediate polycrystalline phase.
Resumo:
Es ist bekannt, dass die Dichte eines gelösten Stoffes die Richtung und die Stärke seiner Bewegung im Untergrund entscheidend bestimmen kann. Eine Vielzahl von Untersuchungen hat gezeigt, dass die Verteilung der Durchlässigkeiten eines porösen Mediums diese Dichteffekte verstärken oder abmindern kann. Wie sich dieser gekoppelte Effekt auf die Vermischung zweier Fluide auswirkt, wurde in dieser Arbeit untersucht und dabei das experimentelle sowohl mit dem numerischen als auch mit dem analytischen Modell gekoppelt. Die auf der Störungstheorie basierende stochastische Theorie der macrodispersion wurde in dieser Arbeit für den Fall der transversalen Makodispersion. Für den Fall einer stabilen Schichtung wurde in einem Modelltank (10m x 1.2m x 0.1m) der Universität Kassel eine Serie sorgfältig kontrollierter zweidimensionaler Experimente an einem stochastisch heterogenen Modellaquifer durchgeführt. Es wurden Versuchsreihen mit variierenden Konzentrationsdifferenzen (250 ppm bis 100 000 ppm) und Strömungsgeschwindigkeiten (u = 1 m/ d bis 8 m/d) an drei verschieden anisotrop gepackten porösen Medien mit variierender Varianzen und Korrelationen der lognormal verteilten Permeabilitäten durchgeführt. Die stationäre räumliche Konzentrationsausbreitung der sich ausbreitenden Salzwasserfahne wurde anhand der Leitfähigkeit gemessen und aus der Höhendifferenz des 84- und 16-prozentigen relativen Konzentrationsdurchgang die Dispersion berechnet. Parallel dazu wurde ein numerisches Modell mit dem dichteabhängigen Finite-Elemente-Strömungs- und Transport-Programm SUTRA aufgestellt. Mit dem kalibrierten numerischen Modell wurden Prognosen für mögliche Transportszenarien, Sensitivitätsanalysen und stochastische Simulationen nach der Monte-Carlo-Methode durchgeführt. Die Einstellung der Strömungsgeschwindigkeit erfolgte - sowohl im experimentellen als auch im numerischen Modell - über konstante Druckränder an den Ein- und Auslauftanks. Dabei zeigte sich eine starke Sensitivität der räumlichen Konzentrationsausbreitung hinsichtlich lokaler Druckvariationen. Die Untersuchungen ergaben, dass sich die Konzentrationsfahne mit steigendem Abstand von der Einströmkante wellenförmig einem effektiven Wert annähert, aus dem die Makrodispersivität ermittelt werden kann. Dabei zeigten sich sichtbare nichtergodische Effekte, d.h. starke Abweichungen in den zweiten räumlichen Momenten der Konzentrationsverteilung der deterministischen Experimente von den Erwartungswerten aus der stochastischen Theorie. Die transversale Makrodispersivität stieg proportional zur Varianz und Korrelation der lognormalen Permeabilitätsverteilung und umgekehrt proportional zur Strömungsgeschwindigkeit und Dichtedifferenz zweier Fluide. Aus dem von Welty et al. [2003] mittels Störungstheorie entwickelten dichteabhängigen Makrodispersionstensor konnte in dieser Arbeit die stochastische Formel für die transversale Makrodispersion weiter entwickelt und - sowohl experimentell als auch numerisch - verifiziert werden.
Resumo:
The method of approximate approximations is based on generating functions representing an approximate partition of the unity, only. In the present paper this method is used for the numerical solution of the Poisson equation and the Stokes system in R^n (n = 2, 3). The corresponding approximate volume potentials will be computed explicitly in these cases, containing a one-dimensional integral, only. Numerical simulations show the efficiency of the method and confirm the expected convergence of essentially second order, depending on the smoothness of the data.
Resumo:
The present dissertation is devoted to the construction of exact and approximate analytical solutions of the problem of light propagation in highly nonlinear media. It is demonstrated that for many experimental conditions, the problem can be studied under the geometrical optics approximation with a sufficient accuracy. Based on the renormalization group symmetry analysis, exact analytical solutions of the eikonal equations with a higher order refractive index are constructed. A new analytical approach to the construction of approximate solutions is suggested. Based on it, approximate solutions for various boundary conditions, nonlinear refractive indices and dimensions are constructed. Exact analytical expressions for the nonlinear self-focusing positions are deduced. On the basis of the obtained solutions a general rule for the single filament intensity is derived; it is demonstrated that the scaling law (the functional dependence of the self-focusing position on the peak beam intensity) is defined by a form of the nonlinear refractive index but not the beam shape at the boundary. Comparisons of the obtained solutions with results of experiments and numerical simulations are discussed.
Resumo:
Polydimethylsiloxane (PDMS) is the elastomer of choice to create a variety of microfluidic devices by soft lithography techniques (eg., [1], [2], [3], [4]). Accurate and reliable design, manufacture, and operation of microfluidic devices made from PDMS, require a detailed characterization of the deformation and failure behavior of the material. This paper discusses progress in a recently-initiated research project towards this goal. We have conducted large-deformation tension and compression experiments on traditional macroscale specimens, as well as microscale tension experiments on thin-film (≈ 50µm thickness) specimens of PDMS with varying ratios of monomer:curing agent (5:1, 10:1, 20:1). We find that the stress-stretch response of these materials shows significant variability, even for nominally identically prepared specimens. A non-linear, large-deformation rubber-elasticity model [5], [6] is applied to represent the behavior of PDMS. The constitutive model has been implemented in a finite-element program [7] to aid the design of microfluidic devices made from this material. As a first attempt towards the goal of estimating the non-linear material parameters for PDMS from indentation experiments, we have conducted micro-indentation experiments using a spherical indenter-tip, and carried out corresponding numerical simulations to verify how well the numerically-predicted P(load-h(depth of indentation) curves compare with the corresponding experimental measurements. The results are encouraging, and show the possibility of estimating the material parameters for PDMS from relatively simple micro-indentation experiments, and corresponding numerical simulations.
Resumo:
Bimodal dispersal probability distributions with characteristic distances differing by several orders of magnitude have been derived and favorably compared to observations by Nathan [Nature (London) 418, 409 (2002)]. For such bimodal kernels, we show that two-dimensional molecular dynamics computer simulations are unable to yield accurate front speeds. Analytically, the usual continuous-space random walks (CSRWs) are applied to two dimensions. We also introduce discrete-space random walks and use them to check the CSRW results (because of the inefficiency of the numerical simulations). The physical results reported are shown to predict front speeds high enough to possibly explain Reid's paradox of rapid tree migration. We also show that, for a time-ordered evolution equation, fronts are always slower in two dimensions than in one dimension and that this difference is important both for unimodal and for bimodal kernels