801 resultados para neural network technique
Resumo:
Superheater corrosion causes vast annual losses for the power companies. With a reliable corrosion prediction method, the plants can be designed accordingly, and knowledge of fuel selection and determination of process conditions may be utilized to minimize superheater corrosion. Growing interest to use recycled fuels creates additional demands for the prediction of corrosion potential. Models depending on corrosion theories will fail, if relations between the inputs and the output are poorly known. A prediction model based on fuzzy logic and an artificial neural network is able to improve its performance as the amount of data increases. The corrosion rate of a superheater material can most reliably be detected with a test done in a test combustor or in a commercial boiler. The steel samples can be located in a special, temperature-controlled probe, and exposed to the corrosive environment for a desired time. These tests give information about the average corrosion potential in that environment. Samples may also be cut from superheaters during shutdowns. The analysis ofsamples taken from probes or superheaters after exposure to corrosive environment is a demanding task: if the corrosive contaminants can be reliably analyzed, the corrosion chemistry can be determined, and an estimate of the material lifetime can be given. In cases where the reason for corrosion is not clear, the determination of the corrosion chemistry and the lifetime estimation is more demanding. In order to provide a laboratory tool for the analysis and prediction, a newapproach was chosen. During this study, the following tools were generated: · Amodel for the prediction of superheater fireside corrosion, based on fuzzy logic and an artificial neural network, build upon a corrosion database developed offuel and bed material analyses, and measured corrosion data. The developed model predicts superheater corrosion with high accuracy at the early stages of a project. · An adaptive corrosion analysis tool based on image analysis, constructedas an expert system. This system utilizes implementation of user-defined algorithms, which allows the development of an artificially intelligent system for thetask. According to the results of the analyses, several new rules were developed for the determination of the degree and type of corrosion. By combining these two tools, a user-friendly expert system for the prediction and analyses of superheater fireside corrosion was developed. This tool may also be used for the minimization of corrosion risks by the design of fluidized bed boilers.
Resumo:
The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.
Resumo:
Diplomityön teoriaosassa tutkittiin monimedian jakelukanavia ja niiden ominaisuuksia sisältöpalveluissa. Työssä esiteltiin keinoja älykkyyden lisäämiseksi monnimediasisältötuotannossa sekä tarkasteltiin sisältöpalvelujen käytettävyyttä. Työssä keskityttiin neuroverkkoteknologiaan, sen toteuttamiseen sekä ohjelmisto-agentteihin. Empiirisessä osassa tutustuttiin työministeriön AVO-ammatinvalintaohjelman toimintaan. Työssä määriteltiin Excel-taulukkoon 280 ammatin ominaisuudet, jotka pohjautuivat AVO:n 122 kysymykseen. Työministeriöstä on saatu 5115 henkilön vastaukset AVO-ammatinvalintaohjelman kysymyksiin. Tätä vastausaineistoa ja tutkimuksessa laadittua ammattitaulukkoa käytettiin neuroverkon opettamiseen. Lopuksi analysoitiin SOM-karttoja. Analyysin tarkoituksena oli tutkia laaditun ammattitaulukon oikeellisuutta ja eri ammattien sijoittumista SOM-kartalle. Tutkimus osoitti, että neuroverkkoteknologia soveltuisi uuden urasuunnittelupalvelun ydinteknologiaksi.
Resumo:
Vaikka keraamisten laattojen valmistusprosessi onkin täysin automatisoitu, viimeinen vaihe eli laaduntarkistus ja luokittelu tehdään yleensä ihmisvoimin. Automaattinen laaduntarkastus laattojen valmistuksessa voidaan perustella taloudellisuus- ja turvallisuusnäkökohtien avulla. Tämän työn tarkoituksena on kuvata tutkimusprojektia keraamisten laattojen luokittelusta erilaisten väripiirteiden avulla. Oleellisena osana tutkittiin RGB- ja spektrikuvien välistä eroa. Työn teoreettinen osuus käy läpi aiemmin aiheesta tehdyn tutkimuksen sekä antaa taustatietoa konenäöstä, hahmontunnistuksesta, luokittelijoista sekä väriteoriasta. Käytännön osan aineistona oli 25 keraamista laattaa, jotka olivat viidestä eri luokasta. Luokittelussa käytettiin apuna k:n lähimmän naapurin (k-NN) luokittelijaa sekä itseorganisoituvaa karttaa (SOM). Saatuja tuloksia verrattiin myös ihmisten tekemään luokitteluun. Neuraalilaskenta huomattiin tärkeäksi työkaluksi spektrianalyysissä. SOM:n ja spektraalisten piirteiden avulla saadut tulokset olivat lupaavia ja ainoastaan kromatisoidut RGB-piirteet olivat luokittelussa parempia kuin nämä.
Resumo:
Suomen ilmatilaa valvotaan reaaliaikaisesti, pääasiassa ilmavalvontatutkilla. Ilmatilassa on lentokoneiden lisäksi paljon muitakin kohteita, jotka tutka havaitsee. Tutka lähettää nämä tiedot edelleen ilmavalvontajärjestelmään. Ilmavalvontajärjestelmä käsittelee tiedot, sekä lähettää ne edelleen esitysjärjestelmään. Esitysjärjestelmässä tiedot esitetään synteettisinä merkkeinä, seurantoina joista käytetään nimitystä träkki. Näiden tietojen puitteissa sekä oman ammattitaitonsa perusteella ihmiset tekevät päätöksiä. Tämän työn tarkoituksena on tutkia tutkan havaintoja träkkien initialisointipisteessä siten, että voitaisiin määritellä tyypillinen rakenne sille mikä on oikea ja mikä väärä tai huono träkki. Tämän lisäksi tulisi ennustaa, mitkä Irakeista eivät aiheudu ilma- aluksista. Saadut tulokset voivat helpottaa työtä havaintojen tulkinnassa - jokainen lintuparvi ei ole ehdokas seurannaksi. Havaintojen luokittelu voidaan tehdä joko neurolaskennalla tai päätöspuulla. Neurolaskenta tehdään neuroverkoilla, jotka koostuvat neuroneista. Päätöspuu- luokittelijat ovat oppivia tietorakenteita kuten neuroverkotkin. Yleisin päätöpuu on binääripuu. Tämän työn tavoitteena on opettaa päätöspuuluokittelija havaintojen avulla siten, että se pystyy luokittelemaan väärät havainnot oikeista. Neurolaskennan mahdollisuuksia tässä työssä ei käsitellä kuin teoreettisesti. Työn tuloksena voi todeta, että päätöspuuluokittelijat ovat erittäin kykeneviä erottamaan oikeat havainnot vääristä. Vaikka tulokset olivat rohkaiseva, lisää tutkimusta tarvitaan määrittelemään luotettavammin tekijät, jotka parhaiten suorittavat luokittelun.
Resumo:
Nokian Renkaat Oyj:ssä on suuntaus päivittäin valmistettavien kumisekoitusten määrien lisäämiseen. Sekoitusmäärien kasvaessa myös laadunvalvontamittauksien kapasiteettia pitää nostaa tai vaihtoehtoisesti vähentää näytteiden tutkimiseen kuluvaa aikaa tai tutkittavien näytteiden määrää. On mietitty, voitaisiinko näytteenottopaikkaa vaihtamalla saada edustavampi näyte. Aikaistamalla näytteenottopaikkaa näytteet saataisiin tutkittua aikaisemmin ja siten sekoitukset saataisiin käyttöön entistä nopeammin. Teoriaosassa käsitellään kumisekoitusprosessia ja tutustutaan käytettävään prosessilaitteistoon ja prosessin eri vaiheisiin. Lisäksi tutustutaan prosessin ohjaukseen, prosessimittauksiin, prosessin säätöihin ja hälytyksiin. Työssä käsitellään myös laatuun vaikuttavia tekijöitä ja perehdytään käytössä oleviin laadunvalvontamittauksiin ja näytteiden analysointiin. Kokeellisessa osassa tutkitaan, mikä olisi paras näytteenottokohta, mietitään mittausten ja mittausajan vähentämisen vaikutuksia sekä sitä, miten näytteet tulisi merkitä. Lisäksi kokeellisessa osassa tehdään neuroverkkomalli viskositeetin ennustamiseksi.
Resumo:
Työn tavoitteena on selvittää voidaanko neuroverkkoa käyttää mallintamaan ja ennustamaan polttoaineen vaikutusta nykyaikaisen auton päästöihin. Näin pystyttäisiin vähentämään aikaa vievien ja kalliiden koeajojen tarvetta. Työ tehtiin Lappeenrannan teknillisen yliopiston ja Fortum Oy:n yhteistyöprojektissa. Työssä tehtiin kolme erilaista mallia. Ensimmäisenä tehtiin autokohtainen malli, jolla pyrittiin ennustamaan autokohtaista käyttäytymistä. Toiseksi kokeiltiin mallia, jossa automalli oli yhtenä syötteenä. Kolmantena yritettiin kiertää eräitä aineiston ongelmia käyttämällä "sumeutettuja" polttoaineiden koostumuksia. Työssä käytettiin MLP-neuroverkkoa, joka opetettiin backpropagation algoritmilla. Työssä havaittiin ettei käytettävissä olleella aineistolla ja käytetyillä malleilla pystytä riittävällä tarkkuudella mallintamaan polttoaineen vaikutusta päästöihin. Aineiston ongelmia olivat mm. suuret mittausvarianssit, aineiston pieni määrä sekä aineiston soveltumattomuus neuroverkolla mallintamiseen.
Resumo:
Tässä diplomityössä tutkittiin kysynnän ennustamista Vaasan & Vaasan Oy:n tuotteille. Ensin työssä perehdyttiin ennustamiseen ja sen tarjoamiin mahdollisuuksiin yrityksessä. Erityisesti kysynnän ennustamisesta saatavat hyödyt käytiin läpi. Kysynnän ennustamisesta haettiin ratkaisua erityisesti ongelmiin työvuorosuunnittelussa.Työssä perehdyttiin ennustemenetelmiin liittyvään kirjallisuuteen, jonka oppien perusteella tehtiin koe-ennustuksia yrityksen kysynnän historiadatan avulla. Koe-ennustuksia tehtiin kuudelle eri Turun leipomon koe-tuotteelle. Ennustettavana aikavälinä oli kahden viikon päiväkohtainen kysyntä. Tämän aikavälin erityisesti peruskysynnälle etsittiin ennustetarkkuudeltaan parasta kvantitatiivista ennustemenetelmää. Koe-ennustuksia tehtiin liukuvilla keskiarvoilla, klassisella aikasarja-analyysillä, eksponentiaalisen tasoituksen menetelmällä, Holtin lineaarisella eksponenttitasoituksen menetelmällä, Wintersin kausittaisella eksponentiaalisella tasoituksella, autoregressiivisillä malleilla, Box-Jenkinsin menetelmällä ja regressioanalyysillä. Myös neuroverkon opettamista historiadatalla ja käyttämistä ongelman ratkaisun apuna kokeiltiin.Koe-ennustuksien tulosten perusteella ennustemenetelmien toimintaa analysoitiin jatkokehitystä varten. Ennustetarkkuuden lisäksi arvioitiin mallin yksinkertaisuutta, helppokäyttöisyyttä ja sopivuutta yrityksen monien tuotteiden ennustamiseen. Myös kausivaihteluihin, trendeihin ja erikoispäiviin kiinnitettiin huomiota. Ennustetarkkuuden huomattiin parantuvan selvästi peruskysyntää ennustettaessa, jos ensin historiadata esikäsittelemällä puhdistettiin erikoispäivistä ja –viikoista.
Resumo:
Tämän työn tarkoituksena oli löytää keinoja erään leijukerroskattilan typenoksidipäästöjen vähentämiseksi. Koska päästöt olivat jo alunperin alhaiset leijukerrostekniikan ja hybridin SNCR/SCR –typenpoistolaitteiston ansiosta, päätettiin päästöjä lähteä vähentämään parantamalla ammoniakkiruiskutuksen säätöä. Alkuperäinen ammoniakkiruiskutuksen säätö oli liian hidas, jotta satunnaisten häiriöiden aiheuttamat typenoksidipiikit olisi pystytty poistamaan. Ammoniakkiruiskutusta parannettiin lisäämällä jokaiseen ammoniakkilinjaan mäntäpumput, joiden avulla ammoniakkia voidaan syöttää sinne, missä sitä eniten tarvitaan. Ammoniakkiruiskutuksen säätöön kehitettiin uusi sumeaan logiikkaan perustuva säätäjä. Myös muita kehittyneitä säätömenetelmiä kuten neuroverkkoa hyödynnettiin säätäjän kehityksessä. Ammoniakkiruiskutuksen säätäjää testattiin menestyksekkäästi Ruotsissa Brista Kraftin Märstassa sijaitsevalla voimalaitoksella
Resumo:
Työn tavoitteena oli tutkia ja vertailla komponenttipohjaisia ohjelmistoarkkitehtuureita (Microsoft .NET ja J2EE). Työn tarkoituksena oli valita ohjelmistoarkkitehtuuri uudelle neuroverkkopohjaiselle urasuunnittelupalvelulle. Tässä työssä selvitettiin myös, miten luodaan kansainvälistettäviä ja lokalisoitavia sovelluksia, sekä kuinka Web-, Windows-, mobiili-, puhe- ja Digi-TV -käyttöliittymät soveltuvat uudelle urasuunnittelupalvelulle. Tutkimustyössä käytettiin alan kirjallisuutta, Microsoftin ja Sun Microsystemsin Web-sivuja. Tutkimustyössä analysoitiin Microsoft Pet Shop- ja Sun Microsystemsin Java Pet Store -esimerkkisovellusten suorituskykyvertailua. Analyysituloksiin perustuen urasuunnittelupalvelussa suositellaan käytettäväksi J2EE-arkkitehtuuria. Uudelle urasuunnittelupalvelulle toimenpide-ehdotus on komponenttipohjainen järjestelmä Web-, puhe- ja Digi-TV -käyttöliittymillä ja personoidulla sisällöllä. Järjestelmä tehdään viisivaiheisena hankkeena, johon sisältyy pilottitestejä. Uuteen urasuunnittelupalveluun liitetään mukaan opiskelijat, oppilaitokset ja työnantajat sekä asiantuntijoita neuroverkon opetusdatan määrittämiseen. Palvelu perustuu integroituun tietokantaan. Eri osajärjestelmissä tuotettua tietoa voidaan hyödyntää kaikkialla urasuunnittelupalvelussa.
Resumo:
In this present work, we are proposing a characteristics reduction system for a facial biometric identification system, using transformed domains such as discrete cosine transformed (DCT) and discrete wavelets transformed (DWT) as parameterization; and Support Vector Machines (SVM) and Neural Network (NN) as classifiers. The size reduction has been done with Principal Component Analysis (PCA) and with Independent Component Analysis (ICA). This system presents a similar success results for both DWT-SVM system and DWT-PCA-SVM system, about 98%. The computational load is improved on training mode due to the decreasing of input’s size and less complexity of the classifier.
Resumo:
Mountain regions worldwide are particularly sensitive to on-going climate change. Specifically in the Alps in Switzerland, the temperature has increased twice as fast than in the rest of the Northern hemisphere. Water temperature closely follows the annual air temperature cycle, severely impacting streams and freshwater ecosystems. In the last 20 years, brown trout (Salmo trutta L) catch has declined by approximately 40-50% in many rivers in Switzerland. Increasing water temperature has been suggested as one of the most likely cause of this decline. Temperature has a direct effect on trout population dynamics through developmental and disease control but can also indirectly impact dynamics via food-web interactions such as resource availability. We developed a spatially explicit modelling framework that allows spatial and temporal projections of trout biomass using the Aare river catchment as a model system, in order to assess the spatial and seasonal patterns of trout biomass variation. Given that biomass has a seasonal variation depending on trout life history stage, we developed seasonal biomass variation models for three periods of the year (Autumn-Winter, Spring and Summer). Because stream water temperature is a critical parameter for brown trout development, we first calibrated a model to predict water temperature as a function of air temperature to be able to further apply climate change scenarios. We then built a model of trout biomass variation by linking water temperature to trout biomass measurements collected by electro-fishing in 21 stations from 2009 to 2011. The different modelling components of our framework had overall a good predictive ability and we could show a seasonal effect of water temperature affecting trout biomass variation. Our statistical framework uses a minimum set of input variables that make it easily transferable to other study areas or fish species but could be improved by including effects of the biotic environment and the evolution of demographical parameters over time. However, our framework still remains informative to spatially highlight where potential changes of water temperature could affect trout biomass. (C) 2015 Elsevier B.V. All rights reserved.-
Resumo:
The question of how to quantify insufficient coping behavior under chronic stress is of major clinical relevance. In fact, chronic stress increasingly dominates modern work conditions and can affect nearly every system of the human body, as suggested by physical, cognitive, affective and behavioral symptoms. Since freshmen students experience constantly high levels of stress due to tight schedules and frequent examinations, we carried out a 3-center study of 1,303 students from Italy, Spain and Argentina in order to develop socioculturally independent means for quantifying coping behavior. The data analysis relied on 2 self-report questionnaires: the Coping Strategies Inventory (COPE) for the assessment of coping behavior and the Zurich Health Questionnaire which assesses consumption behavior and general health dimensions. A neural network approach was used to determine the structural properties inherent in the COPE instrument. Our analyses revealed 2 highly stable, socioculturally independent scales that reflected basic coping behavior in terms of the personality traits activity-passivity and defeatism-resilience. This replicated previous results based on Swiss and US-American data. The percentage of students exhibiting insufficient coping behavior was very similar across the study sites (11.5-18.0%). Given their stability and validity, the newly developed scales enable the quantification of basic coping behavior in a cost-efficient and reliable way, thus clearing the way for the early detection of subjects with insufficient coping skills under chronic stress who may be at risk of physical or mental health problems.
Resumo:
BACKGROUND: The structure and organisation of ecological interactions within an ecosystem is modified by the evolution and coevolution of the individual species it contains. Understanding how historical conditions have shaped this architecture is vital for understanding system responses to change at scales from the microbial upwards. However, in the absence of a group selection process, the collective behaviours and ecosystem functions exhibited by the whole community cannot be organised or adapted in a Darwinian sense. A long-standing open question thus persists: Are there alternative organising principles that enable us to understand and predict how the coevolution of the component species creates and maintains complex collective behaviours exhibited by the ecosystem as a whole? RESULTS: Here we answer this question by incorporating principles from connectionist learning, a previously unrelated discipline already using well-developed theories on how emergent behaviours arise in simple networks. Specifically, we show conditions where natural selection on ecological interactions is functionally equivalent to a simple type of connectionist learning, 'unsupervised learning', well-known in neural-network models of cognitive systems to produce many non-trivial collective behaviours. Accordingly, we find that a community can self-organise in a well-defined and non-trivial sense without selection at the community level; its organisation can be conditioned by past experience in the same sense as connectionist learning models habituate to stimuli. This conditioning drives the community to form a distributed ecological memory of multiple past states, causing the community to: a) converge to these states from any random initial composition; b) accurately restore historical compositions from small fragments; c) recover a state composition following disturbance; and d) to correctly classify ambiguous initial compositions according to their similarity to learned compositions. We examine how the formation of alternative stable states alters the community's response to changing environmental forcing, and we identify conditions under which the ecosystem exhibits hysteresis with potential for catastrophic regime shifts. CONCLUSIONS: This work highlights the potential of connectionist theory to expand our understanding of evo-eco dynamics and collective ecological behaviours. Within this framework we find that, despite not being a Darwinian unit, ecological communities can behave like connectionist learning systems, creating internal conditions that habituate to past environmental conditions and actively recalling those conditions. REVIEWERS: This article was reviewed by Prof. Ricard V Solé, Universitat Pompeu Fabra, Barcelona and Prof. Rob Knight, University of Colorado, Boulder.
Resumo:
To date, for most biological and physiological phenomena, the scientific community has reach a consensus on their related function, except for sleep, which has an undetermined, albeit mystery, function. To further our understanding of sleep function(s), we first focused on the level of complexity at which sleep-like phenomenon can be observed. This lead to the development of an in vitro model. The second approach was to understand the molecular and cellular pathways regulating sleep and wakefulness, using both our in vitro and in vivo models. The third approach (ongoing) is to look across evolution when sleep or wakefulness appears. (1) To address the question as to whether sleep is a cellular property and how this is linked to the entire brain functioning, we developed a model of sleep in vitro by using dissociated primary cortical cultures. We aimed at simulating the major characteristics of sleep and wakefulness in vitro. We have shown that mature cortical cultures display a spontaneous electrical activity similar to sleep. When these cultures are stimulated by waking neurotransmitters, they show a tonic firing activity, similar to wakefulness, but return spontaneously to the "sleep-like" state 24h after stimulation. We have also shown that transcriptional, electrophysiological, and metabolic correlates of sleep and wakefulness can be reliably detected in dissociated cortical cultures. (2) To further understand at which molecular and cellular levels changes between sleep and wakefulness occur, we have used a pharmacological and systematic gene transcription approach in vitro and discovered a major role played by the Erk pathway. Indeed, pharmacological inhibition of this pathway in living animals decreased sleep by 2 hours per day and consolidated both sleep and wakefulness by reducing their fragmentation. (3) Finally, we tried to evaluate the presence of sleep in one of the most primitive species with a neural network. We set up Hydra as a model organism. We hypothesized that sleep as a cellular (neuronal) property may occur with the appearance of the most primitive nervous system. We were able to show that Hydra have periodic rest phases amounting to up to 5 hours per day. In conclusion, our work established an in vitro model to study sleep, discovered one of the major signaling pathways regulating vigilance states, and strongly suggests that sleep is a cellular property highly conserved at the molecular level during evolution. -- Jusqu'à ce jour, la communauté scientifique s'est mise d'accord sur la fonction d'une majorité des processus physiologiques, excepté pour le sommeil. En effet, la fonction du sommeil reste un mystère, et aucun consensus n'est atteint le concernant. Pour mieux comprendre la ou les fonctions du sommeil, (1) nous nous sommes d'abord concentré sur le niveau de complexité auquel un état ressemblant au sommeil peut être observé. Nous avons ainsi développé un modèle du sommeil in vitro, (2) nous avons disséqué les mécanismes moléculaires et cellulaires qui pourraient réguler le sommeil, (3) nous avons cherché à savoir si un état de sommeil peut être trouvé dans l'hydre, l'animal le plus primitif avec un système nerveux. (1) Pour répondre à la question de savoir à quel niveau de complexité apparaît un état de sommeil ou d'éveil, nous avons développé un modèle du sommeil, en utilisant des cellules dissociées de cortex. Nous avons essayé de reproduire les corrélats du sommeil et de l'éveil in vitro. Pour ce faire, nous avons développé des cultures qui montrent les signes électrophysiologiques du sommeil, puis quand stimulées chimiquement passent à un état proche de l'éveil et retournent dans un état de sommeil 24 heures après la stimulation. Notre modèle n'est pas parfait, mais nous avons montré que nous pouvions obtenir les corrélats électrophysiologiques, transcriptionnels et métaboliques du sommeil dans des cellules corticales dissociées. (2) Pour mieux comprendre ce qui se passe au niveau moléculaire et cellulaire durant les différents états de vigilance, nous avons utilisé ce modèle in vitro pour disséquer les différentes voies de signalisation moléculaire. Nous avons donc bloqué pharmacologiquement les voies majeures. Nous avons mis en évidence la voie Erkl/2 qui joue un rôle majeur dans la régulation du sommeil et dans la transcription des gènes qui corrèlent avec le cycle veille-sommeil. En effet, l'inhibition pharmacologique de cette voie chez la souris diminue de 2 heures la quantité du sommeil journalier et consolide l'éveil et le sommeil en diminuant leur fragmentation. (3) Finalement, nous avons cherché la présence du sommeil chez l'Hydre. Pour cela, nous avons étudié le comportement de l'Hydre pendant 24-48h et montrons que des périodes d'inactivité, semblable au sommeil, sont présentes dans cette espèce primitive. L'ensemble de ces travaux indique que le sommeil est une propriété cellulaire, présent chez tout animal avec un système nerveux et régulé par une voie de signalisation phylogénétiquement conservée.