984 resultados para multiple photon infrared excitation
Resumo:
Improved glycemic control is the only treatment that has been shown to be effective for diabetic peripheral neuropathy in patients with type 1 diabetes (1). Continuous subcutaneous insulin infusion (CSII) is superior to multiple daily insulin injection (MDI) for reducing HbA1c and hypoglycemic events (2). Here, we have compared the benefits of CSII compared withMDI for neuropathy over 24months....
Resumo:
This paper investigates the soil–pile interaction of a pile embedded in a deep multi-layered soil under seismic excitation considering both kinematic and inertial interaction effects. A comprehensive three-dimensional finite element model is developed and validated using existing results in the literature. The response of the pile in the deep multi-layered soil profile is investigated with respect to pile head response, deflection modes and maximum deflections along the pile. Results show that the pile exhibits complex deflection patterns and that the pile response is influenced by the properties of both the soil profile and the seismic excitation. It is also evident that kinematic interaction effects have a greater influence on the pile response than the inertial interaction effects.
Resumo:
This thesis reports on a multiple case study of the actions of three Queensland secondary schools in the context of Year 9 NAPLAN numeracy testing, focusing on their administrative practices, curriculum, pedagogy and assessment. It was established that schools have found it both challenging and costly to operate in an environment of educational reform generally, and NAPLAN testing in particular. The lack of a common understanding of numeracy and the substantial demands of implementing the Australian Curriculum have impacted on schools' ability to prepare students appropriately for NAPLAN numeracy tests. It was concluded that there is scope for schools to improve their approaches to NAPLAN numeracy testing in a way that maximises learning as well as test outcomes.
Resumo:
This study examines the effects of temporary tissue expanders (TTEs) on the dose distributions of photon beams in breast cancer radiotherapy treatments. EBT2 radiochromic film and ion chamber measurements were taken to quantify the attenuation and backscatter effects of the inhomogeneity. Results illustrate that the internal magnetic port present in a tissue expander causes a dose reduction of approximately 25% in photon tangent fields immediately downstream of the implant. It was also shown that the silicone elastomer shell of the tissue expander reduced the dose to the target volume by as much as 8%. This work demonstrates the importance for an accurately modelled high-density implant in the treatment planning system for post-mastectomy breast cancer patients.
Resumo:
This paper explores the concept that individual dancers leave traces in a choreographer’s body of work and similarly, that dancers carry forward residue of embodied choreographies into other working processes. This presentation will be grounded in a study of the multiple iterations of a programme of solo works commissioned in 2008 from choreographers John Jasperse, Jodi Melnick, Liz Roche and Rosemary Butcher and danced by the author. This includes an exploration of the development by John Jasperse of themes from his solo into the pieces PURE (2008) and Truth, Revised Histories, Wishful Thinking and Flat Out Lies (2009); an adaptation of the solo Business of the Bloom by Jodi Melnick in 2008 and a further adaptation of Business of the Bloom by this author in 2012. It will map some of the developments that occurred through a number of further performances over five years of the solo Shared Material on Dying by Liz Roche and the working process of the (uncompleted) solo Episodes of Flight by Rosemary Butcher. The purpose is to reflect back on authorship in dance, an art form in which lineages of influence can often be clearly observed. Normally, once a choreographic work is created and performed, it is archived through video recording, notation and/or reviews. The dancer is no longer called upon to represent the dance piece within the archive and thus her/his lived presence and experiential perspective disappears. The author will draw on the different traces still inhabiting her body as pathways towards understanding how choreographic movement circulates beyond this moment of performance. This will include the interrogation of ownership of choreographic movement, as once it becomes integrated in the body of the dancer, who owns the dance? Furthermore, certain dancers, through their individual physical characteristics and moving identities, can deeply influence the formation of choreographic signatures, a proposition that challenges the sole authorship role of the choreographer in dance production. This paper will be delivered in a presentation format that will bleed into movement demonstrations alongside video footage of the works and auto-ethnographic accounts of dancing experience. A further source of knowledge will be drawn from extracts of interviews with other dancers including Sara Rudner, Rebecca Hilton and Catherine Bennett.
Resumo:
Diagnosis of articular cartilage pathology in the early disease stages using current clinical diagnostic imaging modalities is challenging, particularly because there is often no visible change in the tissue surface and matrix content, such as proteoglycans (PG). In this study, we propose the use of near infrared (NIR) spectroscopy to spatially map PG content in articular cartilage. The relationship between NIR spectra and reference data (PG content) obtained from histology of normal and artificially induced PG-depleted cartilage samples was investigated using principal component (PC) and partial least squares (PLS) regression analyses. Significant correlation was obtained between both data (R2 = 91.40%, p<0.0001). The resulting correlation was used to predict PG content from spectra acquired from whole joint sample, this was then employed to spatially map this component of cartilage across the intact sample. We conclude that NIR spectroscopy is a feasible tool for evaluating cartilage contents and mapping their distribution across mammalian joint
Resumo:
The mineral series triplite-zwieselite with theoretical formula (Mn2+)2(PO4)(F)-(Fe2+)2(PO4)(F) from the El Criolo granitic pegmatite, located in the Eastern Pampean Ranges of Córdoba Province, was studied using electron microprobe, thermogravimetry, and Raman and infrared spectroscopy. The analysis of the mineral provided a formula of (Fe1.00, Mn0.85, Ca0.08, Mg0.06)∑2.00(PO4)1.00(F0.80, OH0.20)∑1.00. An intense Raman band at 981 cm−1 with a shoulder at 977 cm−1 is assigned to the ν1 symmetric stretching mode. The observation of two bands for the phosphate symmetric stretching mode offers support for the concept that the phosphate units in the structure of triplite-zwieselite are not equivalent. Low-intensity Raman bands at 1012, 1036, 1071, 1087, and 1127 cm−1 are assigned to the ν3 antisymmetric stretching modes. A set of Raman bands at 572, 604, 639, and 684 cm−1 are attributed to the ν4 out-of-plane bending modes. A single intense Raman band is found at 3508 cm−1 and is assigned to the stretching vibration of hydroxyl units. Infrared bands are observed at 3018, 3125, and 3358 cm−1 and are attributed to water stretching vibrations. Supplemental materials are available for this article. Go to the publisher's online edition of Spectroscopy Letters to view the supplemental file.
Resumo:
Gilalite is a copper silicate mineral with a general formula of Cu5Si6O17 · 7H2O. The mineral is often found in association with another copper silicate mineral, apachite, Cu9Si10O29 · 11H2O. Raman and infrared spectroscopy have been used to characterize the molecular structure of gilalite. The structure of the mineral shows disorder, which is reflected in the difficulty of obtaining quality Raman spectra. Raman spectroscopy clearly shows the absence of OH units in the gilalite structure. Intense Raman bands are observed at 1066, 1083, and 1160 cm−1. The Raman band at 853 cm−1 is assigned to the –SiO3 symmetrical stretching vibration and the low-intensity Raman bands at 914, 953, and 964 cm−1 may be ascribed to the antisymmetric SiO stretching vibrations. An intense Raman band at 673 cm−1 with a shoulder at 663 cm−1 is assigned to the ν4 Si-O-Si bending modes. Raman spectroscopy complemented with infrared spectroscopy enabled a better understanding of the molecular structure of gilalite.
Resumo:
This paper proposes a recommendation system that supports process participants in taking risk-informed decisions, with the goal of reducing risks that may arise during process execution. Risk reduction involves decreasing the likelihood and severity of a process fault from occurring. Given a business process exposed to risks, e.g. a financial process exposed to a risk of reputation loss, we enact this process and whenever a process participant needs to provide input to the process, e.g. by selecting the next task to execute or by filling out a form, we suggest to the participant the action to perform which minimizes the predicted process risk. Risks are predicted by traversing decision trees generated from the logs of past process executions, which consider process data, involved resources, task durations and other information elements like task frequencies. When applied in the context of multiple process instances running concurrently, a second technique is employed that uses integer linear programming to compute the optimal assignment of resources to tasks to be performed, in order to deal with the interplay between risks relative to different instances. The recommendation system has been implemented as a set of components on top of the YAWL BPM system and its effectiveness has been evaluated using a real-life scenario, in collaboration with risk analysts of a large insurance company. The results, based on a simulation of the real-life scenario and its comparison with the event data provided by the company, show that the process instances executed concurrently complete with significantly fewer faults and with lower fault severities, when the recommendations provided by our recommendation system are taken into account.
Establishing the impact of temporary tissue expanders on electron and photon beam dose distributions
Resumo:
Purpose: This study investigates the effects of temporary tissue expanders (TTEs) on the dose distributions in breast cancer radiotherapy treatments under a variety of conditions. Methods: Using EBT2 radiochromic film, both electron and photon beam dose distribution measurements were made for different phantoms, and beam geometries. This was done to establish a more comprehensive understanding of the implant’s perturbation effects under a wider variety of conditions. Results: The magnetic disk present in a tissue expander causes a dose reduction of approximately 20% in a photon tangent treatment and 56% in electron boost fields immediately downstream of the implant. The effects of the silicon elastomer are also much more apparent in an electron beam than a photon beam. Conclusions: Evidently, each component of the TTE attenuates the radiation beam to different degrees. This study has demonstrated that the accuracy of photon and electron treatments of post-mastectomy patients is influenced by the presence of a tissue expander for various beam orientations. The impact of TTEs on dose distributions establishes the importance of an accurately modelled high-density implant in the treatment planning system for post-mastectomy patients.
Resumo:
The dynamic nature of tissue temperature and the subcutaneous properties, such as blood flow, fatness, and metabolic rate, leads to variation in local skin temperature. Therefore, we investigated the effects of using multiple regions of interest when calculating weighted mean skin temperature from four local sites. Twenty-six healthy males completed a single trial in a thermonetural laboratory (mean ± SD): 24.0 (1.2) °C; 56 (8%) relative humidity; < 0.1 m/s air speed). Mean skin temperature was calculated from four local sites (neck, scapula, hand and shin) in accordance with International Standards using digital infrared thermography. A 50 x 50 mm square, defined by strips of aluminium tape, created six unique regions of interest, top left quadrant, top right quadrant, bottom left quadrant, bottom right quadrant, centre quadrant and the entire region of interest, at each of the local sites. The largest potential error in weighted mean skin temperature was calculated using a combination of a) the coolest and b) the warmest regions of interest at each of the local sites. Significant differences between the six regions interest were observed at the neck (P < 0.01), scapula (P < 0.001) and shin (P < 0.05); but not at the hand (P = 0.482). The largest difference (± SEM) at each site was as follows: neck 0.2 (0.1) °C; scapula 0.2 (0.0) °C; shin 0.1 (0.0) °C and hand 0.1 (0.1) °C. The largest potential error (mean ± SD) in weighted mean skin temperature was 0.4 (0.1) °C (P < 0.001) and the associated 95% limits of agreement for these differences was 0.2 to 0.5 °C. Although we observed differences in local and mean skin temperature based on the region of interest employed, these differences were minimal and are not considered physiologically meaningful.
Resumo:
Welcome to the Evaluation of course matrix. This matrix is designed for highly qualified discipline experts to evaluate their course, major or unit in a systemic manner. The primary purpose of the Evaluation of course matrix is to provide a tool that a group of academic staff at universities can collaboratively review the assessment within a course, major or unit annually. The annual review will result in you being ready for an external curricula review at any point in time. This tool is designed for use in a workshop format with one, two or more academic staff, and will lead to an action plan for implementation. I hope you find this tool useful in your assessment review.
Resumo:
Purpose: Skin temperature assessment has historically been undertaken with conductive devices affixed to the skin. With the development of technology, infrared devices are increasingly utilised in the measurement of skin temperature. Therefore, our purpose was to evaluate the agreement between four skin temperature devices at rest, during exercise in the heat, and recovery. Methods: Mean skin temperature (T̅sk) was assessed in thirty healthy males during 30 min rest (24.0± 1.2°C, 56 ± 8%), 30 min cycle in the heat (38.0 ± 0.5°C, 41 ± 2%), and 45 min recovery(24.0 ± 1.3°C, 56 ± 9%). T̅sk was assessed at four sites using two conductive devices(thermistors, iButtons) and two infrared devices (infrared thermometer, infrared camera). Results: Bland–Altman plots demonstrated mean bias ± limits of agreement between the thermistors and iButtons as follows (rest, exercise, recovery): -0.01 ± 0.04, 0.26 ± 0.85, -0.37 ± 0.98°C; thermistors and infrared thermometer: 0.34 ± 0.44, -0.44 ± 1.23, -1.04 ± 1.75°C; thermistors and infrared camera (rest, recovery): 0.83 ± 0.77, 1.88 ± 1.87°C. Pairwise comparisons of T̅sk found significant differences (p < 0.05) between thermistors and both infrared devices during resting conditions, and significant differences between the thermistors and all other devices tested during exercise in the heat and recovery. Conclusions: These results indicate poor agreement between conductive and infrared devices at rest, during exercise in the heat, and subsequent recovery. Infrared devices may not be suitable for monitoring T̅sk in the presence of, or following, metabolic and environmental induced heat stress.