982 resultados para molecular model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Central nervous system (CNS) tuberculosis (TB) is the most severe form of TB, characterized morphologically by brain granulomas and tuberculous meningitis (TBM). Experimental strategies for the study of the host-pathogen interaction through the analysis of granulomas and its intrinsic molecular mechanisms could provide new insights into the neuropathology of TB. To verify whether cerebellar mycobacterial infection induces the main features of the disease in human CNS and better understand the physiological mechanisms underlying the disease, we injected bacillus Calmette-Guerin (BCG) into the mouse cerebellum. BCG-induced CNS-TB is characterized by the formation of granulomas and TBM, a build up of bacterial loads in these lesions, and microglial recruitment into the lesion sites. In addition, there is an enhanced expression of signaling molecules such as nuclear factor-kappa B (NF-kappa B) and there is a presence of inducible nitric oxide synthase (iNOS) in the lesions and surrounding areas. This murine model of cerebellar CNS-TB was characterized by cellular and biochemical immune responses typically found in the human disease. This model could expand our knowledge about granulomas in TB infection of the cerebellum, and help characterize the physiological mechanisms involved with the progression of this serious illness that is responsible for killing millions people every year. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many hypotheses have been proposed to explain high species diversity in Amazonia, but few generalizations have emerged. In part, this has arisen from the scarcity of rigorous tests for mechanisms promoting speciation, and from major uncertainties about palaeogeographic events and their spatial and temporal associations with diversification. Here, we investigate the environmental history of Amazonia using a phylogenetic and biogeographic analysis of trumpeters (Aves: Psophia), which are represented by species in each of the vertebrate areas of endemism. Their relationships reveal an unforeseen 'complete' time-slice of Amazonian diversification over the past 3.0 Myr. We employ this temporally calibrated phylogeny to test competing palaeogeographic hypotheses. Our results are consistent with the establishment of the current Amazonian drainage system at approximately 3.0-2.0 Ma and predict the temporal pattern of major river formation over Plio-Pleistocene times. We propose a palaeobiogeographic model for the last 3.0 Myr of Amazonian history that has implications for understanding patterns of endemism, the temporal history of Amazonian diversification and mechanisms promoting speciation. The history of Psophia, in combination with new geological evidence, provides the strongest direct evidence supporting a role for river dynamics in Amazonian diversification, and the absence of such a role for glacial climate cycles and refugia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of cytochrome c (cyt c) with cardiolipin (CL) induces protein conformational changes that favor peroxidase activity. This process has been correlated with CL oxidation and the induction of cell death. Here we report evidence demonstrating the generation of singlet molecular oxygen [O-2((1)Delta(g))] by a cyt c-CL complex in a model membrane containing CL. The formation of singlet oxygen was directly evidenced by luminescence measurements at 1270 nm and by chemical trapping experiments. Singlet oxygen generation required cyt c-CL binding and occurred at pH values higher than 6, consistent with lipid-protein interactions involving fully deprotonated CL species and positively charged residues in the protein. Moreover, singlet oxygen formation was specifically observed for tetralinoleoyl CL species and was not observed with monounsaturated and saturated CL species. Our results show that there are at least two mechanisms leading to singlet oxygen formation: one with fast kinetics involving the generation of singlet oxygen directly from CL hydroperoxide decomposition and the other involving CL oxidation. The contribution of the first mechanism was clearly evidenced by the detection of labeled singlet oxygen [O-18(2)((1)Delta(g))] from liposomes supplemented with 18-oxygen-labeled CL hydroperoxides. However quantitative analysis showed that singlet oxygen yield from CL hydroperoxides was minor (<5%) and that most of the singlet oxygen is formed from the second mechanism. Based on these data and previous findings we propose a mechanism of singlet oxygen generation through reactions involving peroxyl radicals (Russell mechanism) and excited triplet carbonyl intermediates (energy transfer mechanism).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chitosans have been widely exploited in biological applications, including drug delivery and tissue engineering, especially owing to their mucoadhesive properties, but the molecular-level mechanisms for the chitosan action are not known in detail. It is believed that chitosan could affect the mucus by interacting with the proteins mucins, in a process mediated by the cell membrane. In this study we used Langmuir monolayers of dimyristoylphosphatidic acid (DMPA) as simplified membrane models to investigate the interplay between the activity of mucins and chitosan. Surface pressure and surface potential measurements were performed with DMPA monolayers onto which chitosan and/or mucin was adsorbed. We found that the expanding effect from mucin was considerably reduced when chitosan was injected after mucin had been adsorbed on the DMPA monolayer. The results were consistent with the formation of complexes between mucin and chitosan, thus highlighting the importance of electrostatic interactions. Furthermore, chitosan could remove mucin that was co-deposited along with DMPA in Langmuir-Blodgett (LB) films, which could be ascribed to molecular-level interactions between chitosan and mucin inferred from the FTIR spectra of the LB films. In conclusion, the results with Langmuir and LB films suggest that electrostatic interactions are crucial for the mucoadhesive mechanism, which is affected by the complexation between chitosan and mucin. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated optical and transport properties of the molecular structure 2,3,4,5-tetraphenyl-1-phenylethynyl-cyclopenta-2,4-dienol experimentally and theoretically. The optical spectrum was calculated using Hartree-Fock-intermediate neglect of differential overlap-configuration interaction model. The experimental photoluminescence spectrum showed a peak around 470nm which was very well described by the modeling. Electronic transport measurements showed a diode-like effect with a strong current rectification. A phenomenological microscopic model based on non-equilibrium Green's function technique was proposed and a very good description electronic transport was obtained. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767457]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports the analytical application of surface-enhanced Raman spectroscopy (SERS) in the trace analysis of organophosphorous pesticides (trichlorfon and glyphosate) and model organophosphorous compounds (dimethyl methylphosphonate and o-ethyl methylphosphonothioate) bearing different functional groups. SERS measurements were carried out using Ag nanocubes with an edge square dimension of ca. 100 nm as substrates. Density functional theory (DFT) with the B3LYP functional was used for the optimization of ground state geometries and simulation of Raman spectra of the organophosphorous compounds and their silver complexes. Adsorption geometries and marker bands were identified for each of the investigated compound. Results indicate the usefulness of SERS methodology for the sensitive analyses of organophosphorous compounds through the use of vibrational spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Muscle strains are among the most prevalent causes for athletes absence from sport activities. Low-level laser therapy (LLLT) has recently emerged as a potential contender to nonsteroidal anti-inflammatory drugs in muscle strain treatment. In this work we investigated effects of LLLT and diclofenac on functional outcomes in the acute stage after muscle strain injury in rats. Muscle strain was induced by overloading the tibialis anterior muscle of rats during anesthesia. The injured groups received either no treatment, or a single treatment with diclofenac 30 min prior to injury, or LLLT (810 nm, 100 mW) with doses of 1, 3, 6 or 9 J, at 1 h after injury. Functional outcome measures included a walking index and assessment of electrically induced muscle performance. All treatments (except 9 J LLLT) significantly improved the walking index 12 h postinjury compared with the untreated group. The 3 J group also showed a significantly better walking index than the drug group. All treatments significantly improved muscle performance at 6 and 12 h. LLLT dose of 3 J was as effective as the pharmacological agent in improving functional outcomes in the early phase after a muscle strain injury in rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porphyrin derivatives have applications as photoactive drugs in photodynamic therapy. However, little is known about their interactions with phospholipid membranes at the molecular level. We employed molecular dynamics simulations to model the binding between a series of cationic meso-(N-methyl-4-pyridinium)phenylporphyrins and anionic phosphatidylglycerol lipid bilayers. This was done in the presence of molecular oxygen within the membrane. The ability of various porphyrins to cause photodamage was quantified in terms of their immersion depth and degree of exposition to a higher oxygen concentration inside the membrane. Simulations showed that the photodynamic efficiency could be improved as the number of hydrophobic phenyl substituents attached to the porphyrinic ring increased. In the specific case of porphyrins containing two hydrophobic and two charged substituents, the cis isomer was significantly more efficient than the trans. These results correlate well with previous experimental observations. They highlight the importance of both the total charge and amphiphilicity of the photosensitizer for its performance in photodynamic therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular modeling is growing as a research tool in Chemical Engineering studies, as can be seen by a simple research on the latest publications in the field. Molecular investigations retrieve information on properties often accessible only by expensive and time-consuming experimental techniques, such as those involved in the study of radical-based chain reactions. In this work, different quantum chemical techniques were used to study phenol oxidation by hydroxyl radicals in Advanced Oxidation Processes used for wastewater treatment. The results obtained by applying a DFT-based model showed good agreement with experimental values available, as well as qualitative insights into the mechanism of the overall reaction chain. Solvation models were also tried, but were found to be limited for this reaction system within the considered theoretical level without further parameterization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Neotropical tribe Trimezieae are taxonomically difficult. They are generally characterized by the absence of the features used to delimit their sister group Tigridieae. Delimiting the four genera that make up Trimezieae is also problematic. Previous family-level phylogenetic analyses have not examined the monophyly of the tribe or relationships within it. Reconstructing the phylogeny of Trimezieae will allow us to evaluate the status of the tribe and genera and to examine the suitability of characters traditionally used in their taxonomy. Maximum parsimony and Bayesian phylogenetic analyses are presented for 37 species representing all four genera of Trimezieae. Analyses were based on nrITS sequences and a combined plastid dataset. Ancestral character state reconstructions were used to investigate the evolution of ten morphological characters previously considered taxonomically useful. Analyses of nrITS and plastid datasets strongly support the monophyly of Trimezieae and recover four principal clades with varying levels of support; these clades do not correspond to the currently recognized genera. Relationships within the four clades are not consistently resolved, although the conflicting resolutions are not strongly supported in individual analyses. Ancestral character state reconstructions suggest considerable homoplasy, especially in the floral characters used to delimit Pseudotrimezia. The results strongly support recognition of Trimezieae as a tribe but suggest that both generic- and species-level taxonomy need revision. Further molecular analyses, with increased sampling of taxa and markers, are needed to support any revision. Such analyses will help determine the causes of discordance between the plastid and nuclear data and provide a framework for identifying potential morphological synapomorphies for infra-tribal groups. The results also suggest Trimezieae provide a promising model for evolutionary research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The filamentous fungus Aspergillus nidulans has been used as a fungal model system to study the regulation of xylanase production. These genes are activated at transcriptional level by the master regulator the transcriptional factor XInR and repressed by carbon catabolite repression (CCR) mediated by the wide-domain repressor CreA. Here, we screened a collection of 42 A. nidulans F-box deletion mutants grown either in xylose or xylan as the single carbon source in the presence of the glucose analog 2-deoxy-D-glucose, aiming to identify mutants that have deregulated xylanase induction. We were able to recognize a null mutant in a gene (fbxA) that has decreased xylanase activity and reduced xInA and xInD mRNA accumulation. The Delta fbxA mutant interacts genetically with creAd-30, creB15, and creC27 mutants. FbxA is a novel protein containing a functional F-box domain that binds to Skp1 from the SCF-type ligase. Blastp analysis suggested that FbxA is a protein exclusive from fungi, without any apparent homologs in higher eukaryotes. Our work emphasizes the importance of the ubiquitination in the A. nidulans xylanase induction and CCR. The identification of FbxA provides another layer of complexity to xylanase induction and CCR phenomena in filamentous fungi. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydration of mesityl oxide (MOx) was investigated through a sequential quantum mechanics/molecular mechanics approach. Emphasis was placed on the analysis of the role played by water in the MOx syn-anti equilibrium and the electronic absorption spectrum. Results for the structure of the MOx-water solution, free energy of solvation and polarization effects are also reported. Our main conclusion was that in gas-phase and in low-polarity solvents, the MOx exists dominantly in syn-form and in aqueous solution in anti-form. This conclusion was supported by Gibbs free energy calculations in gas phase and in-water by quantum mechanical calculations with polarizable continuum model and thermodynamic perturbation theory in Monte Carlo simulations using a polarized MOx model. The consideration of the in-water polarization of the MOx is very important to correctly describe the solute-solvent electrostatic interaction. Our best estimate for the shift of the pi-pi* transition energy of MOx, when it changes from gas-phase to water solvent, shows a red-shift of -2,520 +/- 90 cm(-1), which is only 110 cm(-1) (0.014 eV) below the experimental extrapolation of -2,410 +/- 90 cm(-1). This red-shift of around -2,500 cm(-1) can be divided in two distinct and opposite contributions. One contribution is related to the syn -> anti conformational change leading to a blue-shift of similar to 1,700 cm(-1). Other contribution is the solvent effect on the electronic structure of the MOx leading to a red-shift of around -4,200 cm(-1). Additionally, this red-shift caused by the solvent effect on the electronic structure can by composed by approximately 60 % due to the electrostatic bulk effect, 10 % due to the explicit inclusion of the hydrogen-bonded water molecules and 30 % due to the explicit inclusion of the nearest water molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hybrid material with excellent mechanical and biological properties is produced by electrospinning a co-solution of PET and collagen. The fibers are mapped using SEM, confocal Raman microscopy and collagenase digestion assays. Fibers of different compositions and morphologies are intermingled within the same membrane, resulting in a heterogeneous scaffold. The collagen distribution and exposure are found to depend on the PET/collagen ratio. The materials are chemically and mechanically characterized and biologically tested with fibroblasts (3T3-L1) and a HUVEC culture in vitro. All of the hybrid scaffolds show better cell attachment and proliferation than PET. These materials are potential candidates to be used as vascular grafts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we investigate the solubility of a hard-sphere gas in a solvent modeled as an associating lattice gas. The solution phase diagram for solute at 5% is compared with the phase diagram of the original solute free model. Model properties are investigated both through Monte Carlo simulations and a cluster approximation. The model solubility is computed via simulations and is shown to exhibit a minimum as a function of temperature. The line of minimum solubility (TmS) coincides with the line of maximum density (TMD) for different solvent chemical potentials, in accordance with the literature on continuous realistic models and on the "cavity" picture. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4743635]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fractioning of lemon essential oil can be performed by liquid-liquid extraction using hydrous ethanol as a solvent. A quaternary mixture composed of limonene, gamma-terpinene, beta-pinene, and citral was used to simulate lemon essential oil. In this paper, we present (liquid + liquid) equilibrium data that were experimentally determined for systems containing essential oil compounds, ethanol, and water at T = 298.2 K. The experimental data were correlated using the NRTL and UNIQUAC models, and the mean deviations between calculated and experimental data were less than 0.0053 in all systems, indicating the accuracy of these molecular models in describing our systems. The results show that as the water content in the solvent phase increased, the values of the distribution coefficients decreased, regardless of the type of compound studied. However, the oxygenated compound always showed the highest distribution coefficient among the components of the essential oil, thus making deterpenation of the lemon essential oil a feasible process. (C) 2012 Elsevier Ltd. All rights reserved.