972 resultados para minimal occlusive volume technique
Resumo:
Mycotoxins are secondary metabolites of filamentous fungi. They pose a health risk to humans and animals due to their harmful biological properties and common occurrence in food and feed. Liquid chromatography/mass spectrometry (LC/MS) has gained popularity in the trace analysis of food contaminants. In this study, the applicability of the technique was evaluated in multi-residue methods of mycotoxins aiming at simultaneous detection of chemically diverse compounds. Methods were developed for rapid determination of toxins produced by fungal genera of Aspergillus, Fusarium, Penicillium and Claviceps from cheese, cereal based agar matrices and grains. Analytes were extracted from these matrices with organic solvents. Minimal sample clean-up was carried out before the analysis of the mycotoxins with reversed phase LC coupled to tandem MS (MS/MS). The methods were validated and applied for investigating mycotoxins in cheese and ergot alkaloid occurrence in Finnish grains. Additionally, the toxin production of two Fusarium species predominant in northern Europe was studied. Nine mycotoxins could be determined from cheese with the method developed. The limits of quantification (LOQ) allowed the quantification at concentrations varying from 0.6 to 5.0 µg/kg. The recoveries ranged between 96 and 143 %, and the within-day repeatability (as relative standard deviation, RSDr) between 2.3 and 12.1 %. Roquefortine C and mycophenolic acid could be detected at levels of 300 up to 12000 µg/kg in the mould cheese samples analysed. A total of 29 or 31 toxins could be analysed with the method developed for agar matrices and grains, with the LOQs ranging overall from 0.1 to 1250 µg/kg. The recoveries ranged generally between 44 and 139 %, and the RSDr between 2.0 and 38 %. Type-A trichothecenes and beauvericin were determined from the cereal based agar and grain cultures of F. sporotrichioides and F. langsethiae. T-2 toxin was the main metabolite, the average levels reaching 22000 µg/kg in the grain cultures after 28 days of incubation. The method developed for ten ergot alkaloids from grains allowed their quantification at levels varying from 0.01 to 10 µg/kg. The recoveries ranged from 51 to 139 %, and the RSDr from 0.6 to 13.9 %. Ergot alkaloids were measured in barley and rye at average levels of 59 and 720 µg/kg, respectively. The two most prevalent alkaloids were ergocornine and ergocristine. The LC/MS methods developed enabled rapid detection of mycotoxins in such applications where several toxins co-occurred. Generally, the performance of the methods was good, allowing reliable analysis of the mycotoxins of interest with sufficiently low quantification limits. However, the variation in validation results highlighted the challenges related to optimising this type of multi-residue methods. New data was obtained about the occurrence of mycotoxins in mould cheeses and of ergot alkaloids in Finnish grains. In addition, the study revealed the high mycotoxin-producing potential of two common fungi in Finnish crops. The information can be useful when risks related to fungal and mycotoxin contamination will be assessed.
Resumo:
A technique for the measurement of frequency within a cycle of a periodic input is described. This can be useful for quicker measurement of low frequencies.
Resumo:
An asymmetric binary search switching technique for a successive approximation register (SAR) ADC is presented, and trade-off between switching energy and conversion cycles is discussed. Without using any additional switches, the proposed technique consumes 46% less switching energy, for a small input swing (0.5 V-ref (P-P)), as compared to the last reported efficient switching technique in literature for an 8-bit SAR ADC. For a full input swing (2 V-ref (P-P)), the proposed technique consumes 16.5% less switching energy.
Resumo:
A simple method is described to combine a modern function generator and a digital oscilloscope to configure a setup that can directly measure the amplitude frequency response of a system. This is achieved by synchronously triggering both instruments, with the function generator operated in the ``Linear-Sweep'' frequency mode, while the oscilloscope is operated in the ``Envelope'' acquisition mode. Under these conditions, the acquired envelopes directly correspond to the (input and output signal) spectra, whose ratio yields the amplitude frequency response. The method is easy to configure, automatic, time-efficient, and does not require any external control or interface or programming. This method is ideally suited to impart hands-on experience in sweep frequency response measurements, demonstrate resonance phenomenon in transformer windings, explain the working principle of an impedance analyzer, practically exhibit properties of network functions, and so on. The proposed method is an inexpensive alternative to existing commercial equipment meant for this job and is also an effective teaching aid. Details of its implementation, along with some practical measurements on an actual transformer, are presented.
Resumo:
Lamb-wave-based damage detection methods using the triangulation technique are not suitable for handling structures with complex shapes and discontinuities as the parametric/analytical representation of these structures is very difficult. The geodesic concept is used along with the triangulation technique to overcome the above problem. The present work is based on the fundamental fact that a wave takes the minimum energy path to travel between two points on any multiply connected surface and this reduces to the shortest distance path or geodesic. The geodesics are computed on the meshed surface of the structure using the fast marching method. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrices are compared and their difference gives the time information about the reflection of waves from the damage. A wavelet transform is used to extract the arrival time information of the wave scattered by the damage from the acquired Lamb wave signals. The computed geodesics and time information are used in the ellipse algorithm of triangulation formulation to locate the loci of possible damage location points for each actuator-sensor pair. The results obtained for all actuator-sensor pairs are combined and the intersection of multiple loci gives the damage location result. Experiments were conducted in aluminum and composite plate specimens to validate this method.
Resumo:
A solution precursor plasma spray (SPPS) technique has been used for direct deposition of cerium oxide nanoparticles (CNPs) from various cerium salt solutions as precursors. Solution precursors were injected into the hot zone of a plasma plume to deposit CNP coatings. A numerical study of the droplet injection model has been employed for microstructure development during SPPS. The decomposition of each precursor to cerium oxide was analyzed by thermogravimetric-differential thermal analysis and validated by thermodynamic calculations. The presence of the cerium oxide phase in the coatings was confirmed by X-ray diffraction studies. Transmission electron microscopy studies confirmed nanocrystalline (grain size <14 nm) characteristic of the coatings. X-ray photoelectron spectroscopy studies indicated the presence of a high concentration of Ce3+ (up to 0.32) in the coating prepared by SPPS. The processing and microstructure evolution of cerium oxide coatings with high nonstoichiometry are reported.
Resumo:
A direct transform technique is applied to the initial and boundary value problem involving diffraction of a cylindrical pulse by a half plane, on which impedance type of boundary conditions must be met by the total field. The solution to the time harmonic incident plane wave is deduced as a particular case of the general time-dependent problem considered here and we avoid the Wiener–Hopf technique which leads to very complicated factorization and which masks the role of the impedance factor Z′ (a small quantity) in the expression for the scattered field.
Resumo:
An algorithm to generate a minimal spanning tree is presented when the nodes with their coordinates in some m-dimensional Euclidean space and the corresponding metric are given. This algorithm is tested on manually generated data sets. The worst case time complexity of this algorithm is O(n log2n) for a collection of n data samples.
Resumo:
A new deep level transient spectroscopy technique is suggested which allows the deep level parameters to be obtained from a single temperature scan. Using large ratio t2/t1 of the measurement gate positions t1 and t2 and analyzing the steep high‐temperature side of the peak, it is demonstrated that the deep level activation energy can be determined with high accuracy.
Resumo:
Equilibrium sediment volume tests are conducted on field soils to classify them based on their degree of expansivity and/or to predict the liquid limit of soils. The present technical paper examines different equilibrium sediment volume tests, critically evaluating each of them. It discusses the settling behavior of fine-grained soils during the soil sediment formation to evolve a rationale for conducting the latest version of equilibrium sediment volume test. Probable limitations of equilibrium sediment volume test and the possible solution to overcome the same have also been indicated.
Resumo:
Two identities involving quarter-wave plates and half-wave plates are established. These are used to improve on an earlier gadget involving four wave plates leading to a new gadget involving just three plates, a half-wave plate and two quarter-wave plates, which can realize all SU(2) polarization transformations. This gadget is shown to involve the minimum number of quarter-wave and half-wave plates. The analysis leads to a decomposition theorem for SU (2) matrices in terms of factors which are symmetric fourth and eighth roots of the identity.
Resumo:
A new Z' = 1 crystal structure of quinoxaline (or 1,4-diazanaphthalene), C8H6N2, with one-fifth the volume of the earlier known Z' = 5 structure was obtained by means of an in situ cryocrystallization technique.