915 resultados para metallic conduction
Resumo:
We investigate the competition between magnetic depairing interactions, due to spin-exchange mechanism and∕or to spin-dependent asymmetric bandwidths, and pairing coupling in metallic grains. We present a detailed analysis of the quantum ground state in different regimes arising from the interplay between ferromagnetic and pairing correlations for different fillings. We find out that the occurrence of a ground state with coexisting spin-polarization and pairing correlations is enhanced when the asymmetric spin-dependent distribution of the single-particle energies is considered. The mechanisms leading to such a stable quantum state are finally clarified.
Resumo:
The effects of over-doped yttrium on the microstructure, mechanical properties and thermal behaviour of an oxygen-contaminated Zr51Cu20.7Ni12Al16.3 bulk metallic glass are studied systematically. It has been found that, when yttrium doping is beyond the optimum doping, the glass-forming ability enhancement effect induced by yttrium addition decreases and the mechanical properties are adversely affected. In this study, a new phase with an orthorhombic structure (a = 0.69 nm, b = 0.75 nm and c = 0.74 nm) is identified in the yttrium over-doped alloys. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A significant enhancement in glass formation in a newly developed Zr51Cu20.7Ni12Al16.3 alloy has been achieved by yttrium doping. With just 0.5 at.% yttrium doping, the critical diameter of the as-cast alloys for glass formation has been increased from 3 mm to at least 10 mm. In the undoped, large-sized alloys, massive oxygen stabilized crystalline phases are observed but disappear in yttrium doped alloys. Very small amounts of stable alpha-Y2O3 phases found in the yttrium doped alloys, and their negligible effect on the metallic glasses' properties, provide a superior solution to achieve metallic glasses with a high glass formability. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A detailed investigation has been undertaken into a field-induced electron emission (FIEE) mechanism that occurs at microscopically localised `sites' on uncoated, dielectric-coated and composite-coated metallic cathodes. An optical imaging technique has been used to observe and characterize the spatial and temporal behaviour of the populations of emission sites on these cathodes under various experimental conditions, e.g. pulsed-fields, gas environment etc. This study has shown that, for applied fields of 20MVm^-1, thin dielectric (750AA) and composite metal-insulator (MI) overlayers result in a dramatic increase in the total number of emission sites (typically 30cm^-2), and hence emission current. The emission process has been further investigated by a complementary electron spectroscopy technique which has revealed that the localised emission sites on these cathodes display field-dependent spectral shifts and half-widths, i.e. indicative of a `non-metallic' emission mechanism. Details are also given of a comprehensive investigation into the effects of the residual gas environment on the FIEE process from uncoated Cu-cathodes. This latter study has revealed that the well-known Gas Conditioning process can be performed with a wide range of gas species (e.g. O_2, N_2 etc), and furthermore, the degree of conditioning is influenced by both a `Voltage' and `Temperature' effect. These experimental findings have been shown to be particularly important to the technology of high-voltage vacuum-insulation and cold-cathode electron sources. The FIEE mechanism has been interpreted in terms of a hot-electron process that is associated with `electroformed' conducting channels in MI, MIM and MIMI surface microstructures.
Resumo:
The principal aim of this work was to determine the role of non-metallic inclusions in the process of hydrogen stepwise cracking (SWC). Additionally, the influence of inclusions upon the notch ductility of hydrogen charged (HC) and uncharged (UN) tensile specimens was examined. To obtain a basis for experiment a series of low carbon-manganese steels were prepared by induction melting. In order to produce variations in the composition, morphology, volume fraction, size and distribution of the inclusions the steel chemistry was adjusted prior to casting by additions of deoxidiser and Ca-Si injection. Sections of each ingot were hot rolled. Metallography, image analysis, mechanical tests and hydrogen SWC tests were then carried out. The volume fraction, morphology, and shape of inclusions influenced the tensile ductility of the steels. Marked anisotropy was found in the steels containing type II MnS inclusions at all rolling temperatures, whereas the fully Ca treated steel was isotropic. It was found that several inclusion parameters (projected length PL, mean free distance MFD, nearest-neighbour distance NND) correlated with fracture strain. An increase in inclusion volume fraction and/or the dimension of inclusions on a plane parallel to the plane of fracture led to a decrease in fracture strain. The inclusion parameters did not correlate with the fracture strains for the HC tensile specimens. However, large or clusters of inclusions acted as the principal sites for crack initiation. `Fisheyes' or areas of `flat' fracture were often found on these fracture surfaces. The criteria for SWC initiation was found to be either large inclusions or clusters of inclusions. As the PL of inclusions increased the probability of large SWCs occurring increased. SWC initiation at inclusions was believed to occur at a critical concentration of hydrogen. Factors which assisted the concentration of hydrogen at inclusions were discussed. None of the proposed mechanisms of hydrogen embrittlement could be identified as the single cause of SWC.
Resumo:
Impedance spectroscopy has been used to investigate conductivity within boron-doped diamond in an intrinsic/delta-doped/intrinsic (i-d-i) multilayer structure. For a 5 nm thick delta layer, three conduction pathways are observed, which can be assigned to transport within the delta layer and to two differing conduction paths in the i-layers adjoining the delta layer. For transport in the i-layers, thermal trapping/detrapping processes can be observed, and only at the highest temperature investigated (673 K) can transport due to a single conduction process be seen. Impedance spectroscopy is an ideal nondestructive tool for investigating the electrical characteristics of complex diamond structures.
Resumo:
We investigate an application of the method of fundamental solutions (MFS) to heat conduction in two-dimensional bodies, where the thermal diffusivity is piecewise constant. We extend the MFS proposed in Johansson and Lesnic [A method of fundamental solutions for transient heat conduction, Eng. Anal. Bound. Elem. 32 (2008), pp. 697–703] for one-dimensional heat conduction with the sources placed outside the space domain of interest, to the two-dimensional setting. Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate results can be obtained efficiently with small computational cost.
Resumo:
In this paper we investigate an application of the method of fundamental solutions (MFS) to transient heat conduction. In almost all of the previously proposed MFS for time-dependent heat conduction the fictitious sources are located outside the time-interval of interest. In our case, however, these sources are instead placed outside the space domain of interest in the same manner as is done for stationary heat conduction. A denseness result for this method is discussed and the method is numerically tested showing that accurate numerical results can be obtained. Furthermore, a test example with boundary singularities shows that it is advisable to remove such singularities before applying the MFS.
Resumo:
We investigate an application of the method of fundamental solutions (MFS) to the backward heat conduction problem (BHCP). We extend the MFS in Johansson and Lesnic (2008) [5] and Johansson et al. (in press) [6] proposed for one and two-dimensional direct heat conduction problems, respectively, with the sources placed outside the space domain of interest. Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate and stable results can be obtained efficiently with small computational cost.
Resumo:
In this paper we investigate an application of the method of fundamental solutions (MFS) to transient heat conduction in layered materials, where the thermal diffusivity is piecewise constant. Recently, in Johansson and Lesnic [A method of fundamental solutions for transient heat conduction. Eng Anal Boundary Elem 2008;32:697–703], a MFS was proposed with the sources placed outside the space domain of interest, and we extend that technique to numerically approximate the heat flow in layered materials. Theoretical properties of the method, as well as numerical investigations are included.