995 resultados para media markets
Resumo:
This study investigates the relationship between the time-varying risk premiums and conditional market risk in the stock markets of the ten member countries of Economy and Monetary Union. Second, it examines whether the conditional second moments change over time and are there asymmetric effects in the conditional covariance matrix. Third, it analyzes the possible effects of the chosen testing framework. Empirical analysis is conducted using asymmetric univariate and multivariate GARCH-in-mean models and assuming three different degrees of market integration. For a daily sample period from 1999 to 2007, the study shows that the time-varying market risk alone is not enough to explain the dynamics of risk premiums and indications are found that the market risk is detected only when its price is allowed to change over time. Also asymmetric effects in the conditional covariance matrix, which is found to be time-varying, are clearly present and should be recognized in empirical asset pricing analyses.
Resumo:
This thesis examines whether global, local and exchange risks are priced in Scandinavian countries’ equity markets by using conditional international asset pricing models. The employed international asset pricing models are the world capital asset pricing model, the international asset pricing model augmented with the currency risk, and the partially segmented model augmented with the currency risk. Moreover, this research traces estimated equity risk premiums for the Scandinavian countries. The empirical part of the study is performed using generalized method of moments approach. Monthly observations from February 1994 to June 2007 are used. Investors’ conditional expectations are modeled using several instrumental variables. In order to keep system parsimonious the prices of risk are assumed to be constant whereas expected returns and conditional covariances vary over time. The empirical findings of this thesis suggest that the prices of global and local market risk are priced in the Scandinavian countries. This indicates that the Scandinavian countries are mildly segmented from the global markets. Furthermore, the results show that the exchange risk is priced in the Danish and Swedish stock markets when the partially segmented model is augmented with the currency risk factor.
Resumo:
There is an increasing reliance on computers to solve complex engineering problems. This is because computers, in addition to supporting the development and implementation of adequate and clear models, can especially minimize the financial support required. The ability of computers to perform complex calculations at high speed has enabled the creation of highly complex systems to model real-world phenomena. The complexity of the fluid dynamics problem makes it difficult or impossible to solve equations of an object in a flow exactly. Approximate solutions can be obtained by construction and measurement of prototypes placed in a flow, or by use of a numerical simulation. Since usage of prototypes can be prohibitively time-consuming and expensive, many have turned to simulations to provide insight during the engineering process. In this case the simulation setup and parameters can be altered much more easily than one could with a real-world experiment. The objective of this research work is to develop numerical models for different suspensions (fiber suspensions, blood flow through microvessels and branching geometries, and magnetic fluids), and also fluid flow through porous media. The models will have merit as a scientific tool and will also have practical application in industries. Most of the numerical simulations were done by the commercial software, Fluent, and user defined functions were added to apply a multiscale method and magnetic field. The results from simulation of fiber suspension can elucidate the physics behind the break up of a fiber floc, opening the possibility for developing a meaningful numerical model of the fiber flow. The simulation of blood movement from an arteriole through a venule via a capillary showed that the model based on VOF can successfully predict the deformation and flow of RBCs in an arteriole. Furthermore, the result corresponds to the experimental observation illustrates that the RBC is deformed during the movement. The concluding remarks presented, provide a correct methodology and a mathematical and numerical framework for the simulation of blood flows in branching. Analysis of ferrofluids simulations indicate that the magnetic Soret effect can be even higher than the conventional one and its strength depends on the strength of magnetic field, confirmed experimentally by Völker and Odenbach. It was also shown that when a magnetic field is perpendicular to the temperature gradient, there will be additional increase in the heat transfer compared to the cases where the magnetic field is parallel to the temperature gradient. In addition, the statistical evaluation (Taguchi technique) on magnetic fluids showed that the temperature and initial concentration of the magnetic phase exert the maximum and minimum contribution to the thermodiffusion, respectively. In the simulation of flow through porous media, dimensionless pressure drop was studied at different Reynolds numbers, based on pore permeability and interstitial fluid velocity. The obtained results agreed well with the correlation of Macdonald et al. (1979) for the range of actual flow Reynolds studied. Furthermore, calculated results for the dispersion coefficients in the cylinder geometry were found to be in agreement with those of Seymour and Callaghan.
Resumo:
The purpose of this study is to investigate the performance persistence of international mutual funds, employing a data sample which includes 2,168 European mutual funds investing in Asia-Pacific region; Japan excluded. Also, a number of performance measures is tested and compared, and especially, this study tries to find out whether iterative Bayesian procedure can be used to provide more accurate predictions on future performance. Finally, this study examines whether the cross-section of mutual fund returns can be explained with simple accounting variables and market risk. To exclude the effect of the Asian currency crisis in 1997, the studied time period includes years from 1999 to 2007. The overall results showed significant performance persistence for repeating winners when performance was tested with contingency tables. Also the annualized alpha spreads between the top and bottom portfolios were more than ten percent at their highest. Nevertheless, the results do not confirm the improved prediction accuracy of the Bayesian alphas.
Resumo:
A class of three-sided markets (and games) is considered, where value is generated by pairs or triplets of agents belonging to different sectors, as well as by individuals. For these markets we analyze the situation that arises when some agents leave the market with some payoff To this end, we introduce the derived market (and game) and relate it to the Davis and Maschler (1965) reduced game. Consistency with respect to the derived market, together with singleness best and individual anti-monotonicity axiomatically characterize the core for these generalized three-sided assignment markets. These markets may have an empty core, but we define a balanced subclass, where the worth of each triplet is defined as the addition of the worths of the pairs it contains. Keywords: Multi-sided assignment market, Consistency, Core, Nucleolus. JEL Classification: C71, C78
Resumo:
This paper adopts dynamic factor models with macro-finance predictors to test the intertemporal risk-return relation for 13 European stock markets. We identify country specific, euro area, and global macro-finance factors to determine the conditional risk and return. Empirically, the risk- return trade-off is generally negative. However, a Markov switching model documents that there is time-variation in this trade-off that is linked to the state of the economy. Keywords: Risk-return trade-off; Dynamic factor model; Macro-finance predictors; European stock markets; Markov switching model JEL Classifications: C22; G11; G12; G17
Resumo:
We analyse volatility spillovers in EMU sovereign bond markets. First, we examine the unconditional patterns during the full sample (April 1999-January 2014) using a measure recently proposed by Diebold and Yılmaz (2012). Second, we make use of a dynamic analysis to evaluate net directional volatility spillovers for each of the eleven countries under study, and to determine whether core and peripheral markets present differences. Finally, we apply a panel analysis to empirically investigate the determinants of net directional spillovers of this kind.
Resumo:
Bioenergy came to Russia through wood pellets. On account of prevalence of oil and gas in the Russian economy «bioenergy» has come with a great delay. Certainly, there were many woodworking enterprises and even municipal boiler-houses using wood waste and fire wood for energy reception, but this activity was not purposeful. More likely it was connected with necessity of waste recycling and with the organization of heat supply in the remote areas of the country. However, in 2001 was founded the first pellet plant in Russia. The purpose of this work was to analyze wood pellets market in Russia, investigate current situation on the home and export market, evaluates supply and demand development, opportunities for wood pellets manufactures in Russia, the main manufactures in Russian market; cost and prices for wood pellets in Russia. Also the work was intended to give better understanding of the main problems of wood pellets industry in Russia. Besides, this work had updated information about Russian customs and logistic systems.
Resumo:
The objective of this thesis is to shed light on the vertical vibration of granular materials for potential interest in the power generation industry. The main focus is investigating the drag force and frictional resistance that influence the movement of a granular material (in the form of glass beads) contained in a vessel, which is subjected to sinusoidal oscillation. The thesis is divided into three parts: theoretical analysis, experiments and computer simulations. The theoretical part of this study presents the underlying physical phenomena of the vibration of granular materials. Experiments are designed to determine fundamental parameters that contribute to the behavior of vibrating granular media. Numerical simulations include the use of three different software applications: FLUENT, LS-DYNA and ANSYS Workbench. The goal of these simulations is to test theoretical and semiempirical models for granular materials in order to validate their compatibility with the experimental findings, to assist in predicting their behavior, and to estimate quantities that are hard to measure in laboratory.
Resumo:
Streaming potential measurements for the surface charge characterisation of different filter media types and materials were used. The equipment was developed further so that measurements could be taken along the surfaces, and so that tubular membranes could also be measured. The streaming potential proved to be a very useful tool in the charge analysis of both clean and fouled filter media. Adsorption and fouling could be studied, as could flux, as functions of time. A module to determine the membrane potential was also constructed. The results collected from the experiments conducted with these devices were used in the study of the theory of streaming potential as an electrokinetic phenomenon. Several correction factors, which are derived to take into account the surface conductance and the electrokinetic flow in very narrow capillaries, were tested in practice. The surface materials were studied using FTIR and the results compared with those from the streaming potentials. FTIR analysis was also found to be a useful tool in the characterisation of filters, as well as in the fouling studies. Upon examination of the recorded spectra from different depths in a sample it was possible to determine the adsorption sites. The influence of an external electric field on the cross flow microflltration of a binary protein system was investigated using a membrane electroflltration apparatus. The results showed that a significant improvement could be achieved in membrane filtration by using the measured electrochemical properties to help adjust the process conditions.
Resumo:
We present the implementation of dynamic electrostatic force microscopy in liquid media. This implementation enables the quantitative imaging of local dielectric properties of materials in electrolyte solutions with nanoscale spatial resolution. Local imaging capabilities are obtained by probing the frequency-dependent and ionic concentration-dependent electrostatic forces at high frequency (>1 MHz), while quantification of the interaction forces is obtained with finite-element numerical calculations. The results presented open a wide range of possibilities in a number of fields where the dielectric properties of materials need to be probed at the nanoscale and in a liquid environment.