801 resultados para mathematical theories
Resumo:
The rural electrification is characterized by geographical dispersion of the population, low consumption, high investment by consumers and high cost. Moreover, solar radiation constitutes an inexhaustible source of energy and in its conversion into electricity photovoltaic panels are used. In this study, equations were adjusted to field conditions presented by the manufacturer for current and power of small photovoltaic systems. The mathematical analysis was performed on the photovoltaic rural system I- 100 from ISOFOTON, with power 300 Wp, located at the Experimental Farm Lageado of FCA/UNESP. For the development of such equations, the circuitry of photovoltaic cells has been studied to apply iterative numerical methods for the determination of electrical parameters and possible errors in the appropriate equations in the literature to reality. Therefore, a simulation of a photovoltaic panel was proposed through mathematical equations that were adjusted according to the data of local radiation. The results have presented equations that provide real answers to the user and may assist in the design of these systems, once calculated that the maximum power limit ensures a supply of energy generated. This real sizing helps establishing the possible applications of solar energy to the rural producer and informing the real possibilities of generating electricity from the sun.
Resumo:
The main focus of this thesis is the formation of a mathematical teacher at a college institution. The general aim is to describe and to analyze the formation process of a mathematical teacher which is an undergraduate student in Mathematics at the Instituto de Educação Superior Presidente Kennedy IFESP, in Natal-RN. It is based on a qualitative ethnographic approach, and has its theoretical anchorage in the (auto)biographical narratives, the social representative theories, and the mathematical education. The number of participants in this investigation was 12 undergraduate students, which corresponds to 25% of the total number of students. The corpus utilized in our analysis included 48 (auto)biographical essays, 12 (auto)biographies (formation's memories), and 12 contextualization files, besides the research's diary. The sources were obtained from the whole program of studies, i.e. from November 2003 to December 2006. The analysis revealed that the reminiscences of the 12 students' academic trajectory influenced their professional formation, since their images of a mathematical teacher were intrinsically related to the one they had before. These representations were being either demolished or constructed in a network along the assertive image of their profession, changing afterwards the mathematical representation and the teaching way of this discipline. Our study also shows that the beginning of their teacher career was marked by mechanical practices influenced by their old teachers. The (trans)formation of themselves and their teaching practices happened in a smooth way as soon as they increased their knowledgements in Mathematics, and it reflected upon the way they learned mathematics. The writing of their (auto)biographies helped the set up of new knowledgements, leaving to a self-consciousness as well as a self-formation, and contributed for the construction of a new way to see and to live the profession. Therefore, a mathematical teacher, for the undergraduate students of the IFESP involved in this work, is made at the interface of the familiar, academic, and professional context, besides the reflexive writings about the formation path, the way of life and the relationships among them
Resumo:
This work aims to analyze the concept of "paradox" posed in the work of The Budget Paradox (1872) of mathematical and logical English Augustus De Morgan (1806-1871). Here it is important to note that a large part of this book consists of re-prints of a series of writings by the author in journal Athenaeum, where its performance as auditor of literature. The tests refer to some scientific work produced between the years 1489 and 1866 and the rules of selection for the composition of the work is, basically, the methodological aspects used in the completion or disclosed by such scholars. The concept of paradox is presented in two distinct moments. At first, we found a study of definitions for the term in a philosophical approach, characterizing it as something that requires further investigation; which was complemented with the classic examples of a scientific context. In the second, we present a concept advocated by De Morgan and, under this perspective, that he conceptualized the "paradox" is directly related to the non-usual methods employed in the formulation of new scientific theories. In this study some of these scientific concepts are detailed, where, through the redemption history, engaging in issues of our study Mathematics, Physics, of Logic, among others. Possession of the preliminary analysis and comparison with the design of De Morgan, it became possible to diagnose some limitations in the conceptualization suggested by the author. Further, evidenced, in front of the cases, the nonlinearity of the process of production of knowledge and hence the progress of science
Resumo:
To investigate in practice of the Wheelchair Dancesport (WDS), the mathematics of the characteristic isometric movements of the dance of ChaChaCha was the generating subject of this study. The subjects and the locus of the research were the athletes dancers of the Associação Baiana de Dança em Cadeira de Rodas (ABDCR). Referred him study aimed at to describe reflections concerning the athletes' practicing dancers of the technical acting Wheelchair Dancesport, using the inherent mathematical knowledge to the isometric movements executed in the ChaChaCha. For that, I stimulated in the athlete dancer the need to be investigating of his/her own practice, motivating him/it to be searching of information that they collaborate with his/her technical refinement, proposing like this roads to make possible his/her growth, while dancer and, also, promoting of their own movements. To reach my objectives I dialogued with some specialists to understand, to the light of their theories as, Espaçonumerática, Sociology of the mathematics, Etnomathematical, Dance and Symmetry, as those spaces they interact with the atmosphere of the Wheelchair Dancesport and that contributions could supply to the study. However, two authors of the Dancesport for walking , Ried e Laird, they brought contributions that aided in the creation of a prototype for the study of isometric movements in practice of the modality promoting the interface between the theory and the practice. The study showed to be possible to navigate still with the Mathematical Education in an universe little known as the one of the Wheelchair Dancesport. And it is in this adapts that propose a more attentive glance to the illustrations executed by the athlete dancer wheelchair and walking , in the dance of the ChaChaCha, verifying and proposing an analysis with focus investigate, looking for mathematical tracks concerning the symmetry that you/they characterize some of their illustrations
Resumo:
This study describes about graduation s students difficulties of to draw functions graph. Specifically, we intend to observe their abilities evolution, as well as their difficulties during Calculus I subject in engineering course. For that, we show them publications about the elaboration of graphs and its difficulties in obstacle terms and some researches witch contain this subject and that it was done during postgraduate studies in mathematical education. It shows by research methodology aspects related to French didatic s mathematic and some theories of cognitive psychology considering the high value between theoretical-methodological relation that was evidenced in both theoretical conceptions about ways to understand and teach mathematic. This methodology is based on didactic engineering purpose, that consist in preliminaries analysis, conception and didactic sequence analysis prior, trials by application followed analysis up and conclusion. We had also used pedagogicals actions and analysis of results achieved, to classify types of errors made by the 2005 s students during second semester, from conceptions related to the episthemologic and didactics obstacles
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neural networks and wavelet transform have been recently seen as attractive tools for developing eficient solutions for many real world problems in function approximation. Function approximation is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. So, mathematical model is a very important tool to guarantee the development of the neural network area. In this article we will introduce one series of mathematical demonstrations that guarantee the wavelets properties for the PPS functions. As application, we will show the use of PPS-wavelets in pattern recognition problems of handwritten digit through function approximation techniques.
Resumo:
Using a synthesis of the functional integral and operator approaches we discuss the fermion-buson mapping and the role played by the Bose field algebra in the Hilbert space of two-dimensional gauge and anomalous gauge field theories with massive fermions. In QED, with quartic self-interaction among massive fermions, the use of an auxiliary vector field introduces a redundant Bose field algebra that should not be considered as an element of the intrinsic algebraic structure defining the model. In anomalous chiral QED, with massive fermions the effect of the chiral anomaly leads to the appearance in the mass operator of a spurious Bose field combination. This phase factor carries no fermion selection rule and the expected absence of Theta-vacuum in the anomalous model is displayed from the operator solution. Even in the anomalous model with massive Fermi fields, the introduction of the Wess-Zumino field replicates the theory, changing neither its algebraic content nor its physical content. (C) 2002 Elsevier B.V. (USA).
Resumo:
We explore here the issue of duality versus spectrum equivalence in dual theories generated through the master action approach. Specifically we examine a generalized self-dual (GSD) model where a Maxwell term is added to the self-dual model. A gauge embedding procedure applied to the GSD model leads to a Maxwell-Chern-Simons (MCS) theory with higher derivatives. We show here that the latter contains a ghost mode contrary to the original GSD model. By figuring out the origin of the ghost we are able to suggest a new master action which interpolates between the local GSD model and a nonlocal MCS model. Those models share the same spectrum and are ghost free. Furthermore, there is a dual map between both theories at classical level which survives quantum correlation functions up to contact terms. The remarks made here may be relevant for other applications of the master action approach.
Resumo:
The existence of an interpolating master action does not guarantee the same spectrum for the interpolated dual theories. In the specific case of a generalized self-dual (GSD) model defined as the addition of the Maxwell term to the self-dual model in D = 2 + 1, previous master actions have furnished a dual gauge theory which is either nonlocal or contains a ghost mode. Here we show that by reducing the Maxwell term to first order by means of an auxiliary field we are able to define a master action which interpolates between the GSD model and a couple of non-interacting Maxwell-Chern-Simons theories of opposite helicities. The presence of an auxiliary field explains the doubling of fields in the dual gauge theory. A generalized duality transformation is defined and both models can be interpreted as self-dual models. Furthermore, it is shown how to obtain the gauge invariant correlators of the non-interacting MCS theories from the correlators of the self-dual field in the GSD model and vice-versa. The derivation of the non-interacting MCS theories from the GSD model, as presented here, works in the opposite direction of the soldering approach.
Resumo:
Some years ago, it was shown how fermion self-interacting terms of the Thirring-type impact the usual structure of massless two-dimensional gauge theories [1]. In that work only the cases of pure vector and pure chiral gauge couplings have been considered and the corresponding Thirring term was also pure vector and pure chiral respectively, such that the vector ( or chiral) Schwinger model should not lose its chirality structure due to the addition of the quartic interaction term. Here we extend this analysis to a generalized vector and axial coupling both for the gauge interaction and the quartic fermionic interactions. The idea is to perform quantization without losing the original structure of the gauge coupling. In order to do that we make use of an arbitrariness in the definition of the Thirring-like interaction.
Resumo:
Several researches have been developed in order to verify the porosity effect over the ceramic material properties. The starch consolidation casting (SCC) allows to obtain porous ceramics by using starch as a binder and pore forming element. This work is intended to describe the porous mathematical behavior and the mechanical resistance at different commercial starch concentration. Ceramic samples were made with alumina and potato and corn starches. The slips were prepared with 10 to 50 wt% of starch. The specimens were characterized by apparent density measurements and three-point flexural test associated to Weibull statistics. Results indicated that the porosity showed a first-order exponential equation e(-x/c) increasing in both kinds of starches, so it was confirmed that the alumina ceramic porosity is related to the kind of starch used. The mechanical resistance is represented by a logarithmic expression R = A + B/1+10((Log(x0)-P)C).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The conventional Newton and fast decoupled power flow (FDPF) methods have been considered inadequate to obtain the maximum loading point of power systems due to ill-conditioning problems at and near this critical point. It is well known that the PV and Q-theta decoupling assumptions of the fast decoupled power flow formulation no longer hold in the vicinity of the critical point. Moreover, the Jacobian matrix of the Newton method becomes singular at this point. However, the maximum loading point can be efficiently computed through parameterization techniques of continuation methods. In this paper it is shown that by using either theta or V as a parameter, the new fast decoupled power flow versions (XB and BX) become adequate for the computation of the maximum loading point only with a few small modifications. The possible use of reactive power injection in a selected PV bus (Q(PV)) as continuation parameter (mu) for the computation of the maximum loading point is also shown. A trivial secant predictor, the modified zero-order polynomial which uses the current solution and a fixed increment in the parameter (V, theta, or mu) as an estimate for the next solution, is used in predictor step. These new versions are compared to each other with the purpose of pointing out their features, as well as the influence of reactive power and transformer tap limits. The results obtained with the new approach for the IEEE test systems (14, 30, 57 and 118 buses) are presented and discussed in the companion paper. The results show that the characteristics of the conventional method are enhanced and the region of convergence around the singular solution is enlarged. In addition, it is shown that parameters can be switched during the tracing process in order to efficiently determine all the PV curve points with few iterations. (C) 2003 Elsevier B.V. All rights reserved.