991 resultados para leaf litter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutualistic associations shape the evolution in different organism groups. The association between the leaf-cutter ant Atta sexdens and the basidiomycete fungus Leucoagaricus gongylophorus has enabled them to degrade starch from plant material generating glucose, which is a major food source for both mutualists. Starch degradation is promoted by enzymes contained in the fecal fluid that ants deposit on the fungus culture in cut leaves inside the nests. To understand the dynamics of starch degradation in ant nests, we purified and characterized starch degrading enzymes from the ant fecal fluid and from laboratory cultures of L. gongylophorus and found that the ants intestine positively selects fungal α-amylase and a maltase likely produced by the ants, as a negative selection is imposed to fungal maltase and ant α-amylases. Selected enzymes are more resistant to catabolic repression by glucose and proposed to structure a metabolic pathway in which the fungal α-amylase initiates starch catalysis to generate byproducts which are sequentially degraded by the maltase to produce glucose. The pathway is responsible for effective degradation of starch and proposed to represent a major evolutionary innovation enabling efficient starch assimilation from plant material by leaf-cutters. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leaf-cutting ants modify the properties of the soil adjacent to their nests. Here, we examined whether such an ant-altered environment impacts the belowground fungal communities. Fungal diversity and community structure of soil from the fungus garden chambers of Atta sexdens rubropilosa and Atta bisphaerica, two widespread leaf-cutting ants in Brazil, were determined and compared with non-nest soils. Culture-dependent methods revealed similar species richness but different community compositions between both types of soils. Penicillium janthinellum and Trichoderma spirale were the prevalent isolates in fungus chamber soils and non-nest soils, respectively. In contrast to cultivation methods, analyses of clone libraries based on the internal transcribed spacer (ITS) region indicated that richness of operational taxonomic units significantly differed between soils of the fungus chamber and non-nest soils. FastUnifrac analyses based on ITS sequences further revealed a clear distinction in the community structure between both types of soils. Plectania milleri and an uncultured Clavariaceae fungus were prevalent in fungus chamber soils and non-nest soils, respectively. FastUnifrac analyses also revealed that fungal community structures of soil from the garden chambers markedly differed among ant species. Our findings suggest that leaf-cutting ants affect fungal communities in the soil from the fungus chamber in comparison to non-nest soils. © 2013 WILEY-VCH Verlag GmbH & Co.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a green adsorbent was successfully applied to remove toxic metals from aqueous solutions. Dried minced castor leaves were fractionated into 63-μm particles to perform characterization and extraction experiments. Absorption bands in FTIR (Fourier Transform Infrared Spectroscopy) spectra at 1544, 1232 and 1350 cm-1 were assigned to nitrogen-containing groups. Elemental analysis showed high nitrogen and sulfur content: 5.76 and 1.93%, respectively. The adsorption kinetics for Cd(II) and Pb(II) followed a pseudo-second-order model, and no difference between the experimental and calculated Nf values (0.094 and 0.05 mmol g-1 for Cd(II) and Pb(II), respectively) was observed. The Ns values calculated using the modified Langmuir equation, 0.340 and 0.327 mmol g-1 for Cd(II) and Pb(II), respectively, were superior to the results obtained for several materials in the literature. The method proposed in this study was applied to pre-concentrate (45-fold enrichment factor) and used to measure Cd(II) and Pb(II) in freshwater samples from the Paraná River. The method was validated through a comparative analysis with a standard reference material (1643e). © 2013 Elsevier B.V. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we examined how residues of nitrogen (N), phosphorus (P) and calcium (Ca) fertilisers affect leaf anatomical traits in Maprounea brasiliensis (Euphorbiaceae), a typical and dominant cerrado (Brazilian savannah) species adapted to dystrophic soils. We predicted that fertiliser residues would alter qualitative and quantitative aspects of M. brasiliensis leaves and would decrease their scleromorphy. Leaves were sampled from plants that were growing in soils previously fertilised with N, P and Ca and in plants that were growing in soils without fertiliser residues. We measured the thickness of the cuticle, the epidermis of adaxial and abaxial surfaces, thickness of palisade parenchyma and spongy parenchyma, total thickness of the leaf, total area of the midrib and leaf mass per area (LMA). We found that plants under fertiliser residues produced fewer scleromorphic leaves with low LMA, thinner cuticle and epidermis and thicker palisade and spongy parenchyma. They also showed a decrease in the size and area occupied by the leaf midvein. However, plants under fertiliser residues produced similar leaf thickness as did the plants in the control group. Our results showed that residual effects of fertilisation changed structural patterns of a typical species of cerrado. Thus, further studies about fertilisation effects on leaf traits are needed because larger areas of the central cerrado are being occupied for agricultural production. © 2013 CSIRO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fungus-growing ants associate with multiple symbiotic microbes, including Actinobacteria for production of antibiotics. The best studied of these bacteria are within the genus Pseudonocardia, which in most fungus-growing ants are conspicuously visible on the external cuticle of workers. However, given that fungus-growing ants in the genus Atta do not carry visible Actinobacteria on their cuticle, it is unclear if this genus engages in the symbiosis with Pseudonocardia. Here we explore whether improving culturing techniques can allow for successful isolation of Pseudonocardia from Atta cephalotes leaf-cutting ants. We obtained Pseudonocardia from 9 of 11 isolation method/colony component combinations from all 5 colonies intensively sampled. The most efficient technique was bead-beating workers in phosphate buffer solution, then plating the suspension on carboxymethylcellulose medium. Placing these strains in a fungus-growing ant-associated Pseudonocardia phylogeny revealed that while some strains grouped with clades of Pseudonocardia associated with other genera of fungus-growing ants, a large portion of the isolates fell into two novel phylogenetic clades previously not identified from this ant-microbe symbiosis. Our findings suggest that Pseudonocardia may be associated with Atta fungus-growing ants, potentially internalized, and that localizing the symbiont and exploring its role is necessary to shed further light on the association.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ecology of forest and savanna trees species will largely determine the structure and dynamics of the forest-savanna boundaries, but little is known about the constraints to leaf trait variation imposed by selective forces and evolutionary history during the process of savanna invasion by forest species. We compared seasonal patterns in leaf traits related to leaf structure, carbon assimilation, water, and nutrient relations in 10 congeneric species pairs, each containing one savanna species and one forest species. All individuals were growing in dystrophic oxisols in a fire-protected savanna of Central Brazil. We tested the hypothesis that forest species would be more constrained by seasonal drought and nutrient-poor soils than their savanna congeners. We also hypothesized that habitat, rather than phylogeny, would explain more of the interspecific variance in leaf traits of the studied species. We found that throughout the year forest trees had higher specific leaf area (SLA) but lower integrated water use efficiency than savanna trees. Forest and savanna species maintained similar values of predawn and midday leaf water potential along the year. Lower values were measured in the dry season. However, this was achieved by a stronger regulation of stomatal conductance and of CO2 assimilation on an area basis (A area) in forest trees, particularly toward the end of the dry season. Relative to savanna trees, forest trees maintained similar (P, K, Ca, and Mg) or slightly higher (N) leaf nutrient concentrations. For the majority of traits, more variance was explained by phylogeny, than by habitat of origin, with the exception of SLA, leaf N concentration, and A area, which were apparently subjected to different selective pressures in the savanna and forest environments. In conclusion, water shortage during extended droughts would be more limiting for forest trees than nutrient-poor soils. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deciduous forests from the neotropics are one of the most endangered forest types in the world due to the exploitation of their natural resources by mankind. Many aspects of these ecosystems have been studied; however, there is a lack of information about leaf structure and the effects of tree dominance on their structural leaf patterns. In this article, we examine leaf anatomy and specific leaf areas (SLA) in 13 tree species differing in their dominance in a Dry Forest site in Central Brazil, relating leaf anatomical traits with phytosociological aspects. Leaf anatomical traits differed according to tree dominance: greater leaf thickness (achieved through greater thickness of the mesophyll), low values of SLA and bigger stomata were found for the most dominant species, whereas the less dominant species showed thinner leaves with high SLA, as well as numerous and small stomata. These responses suggest that tree dominance is an important indirect effect associated with vertical light availability in the forest. These strategies are probably related to the accomplishment of a high performance in carbon gain and water economy, given the distinction in irradiance that the leaves of different species are subject to in the dry forest. © 2013 Copyright The Royal Society of New Zealand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The leaf-cutter ant Atta laevigata (Formicidae: Attini) is an agricultural pest largely distributed in the Neotropics and a model organism for studies of evolution, speciation and population genetics. Microsatellites are a very powerful tool for these kind of studies, but such markers are not available for studies on A. laevigata. In the present report, we describe the isolation and characterization of nine microsatellite loci in A. laevigata and the testing of these markers across other species of leaf-cutter ants. Findings. Nine microsatellite loci, consisting of six dinucloeotide, one trinucleotide, one tetranucleotide, and one di/trinucleotide repeat motifs, were isolated and characterized. Primers and protocols were successfully designed to selectively amplify these markers. To test effectiveness of these markers for detailed population genetic studies, we genotyped female workers collected from 36 monogynic nests of A. laevigata and found that eight loci were within Hardy-Weinberg expectations, while the remaining locus had a deficiency of heterozygotes. Micro-Checker analysis of individuals from 55 monogynic nests indicated that loci Alae11, Alae24, Alae18 showed signs of null alleles. For the remaining six loci, the number of alleles per locus ranged between 2 and 11, with expected heterozygosity ranging between 0.07 and 0.88. All of these loci cross-amplified in other species of Atta. Conclusions: These six polymorphic microsatellite loci should prove useful for future genetic investigations of the pest species Atta laevigata, as well as studies of other species of leaf-cutter ants in the genus Atta. © 2013 Kakazu et al.; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Swimmer syndrome is a developmental abnormality characterized by a delay in the ability to walk and move about and is manifested in newborns between 15 and 20 days of age. These animals exhibit constant coxofemoral articulation abduction, and their pelvic limbs move caudally and laterally. This case reports a litter of three crossbreeds kittens (26 days old) with swimmer syndrome. Each animal was treated with physical therapy and shackle bandages that kept their pelvic limbs bent and close to the body. After seven days, all of the animals exhibited normal ambulation, indicating that this treatment had a curative effect on the kittens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims: Recent studies showed a positive tree response to Na addition in K-depleted tropical soils. Our study aimed to gain insight into the effects of K and Na fertilizations on leaf area components for a widely planted tree species. Methods: Leaf expansion rates, as well as nutrient, polyol and soluble sugar concentrations, were measured from emergence to abscission of tagged leaves in 1-year-old Eucalyptus grandis plantations. Leaf cell size and water status parameters were compared 1 and 2 months after leaf emergence in plots with KCl application (+K), NaCl application (+Na) and control plots (C). Results: K and Na applications enhanced tree leaf area by increasing both leaf longevity and the mean area of individual leaves. Higher cell turgor in treatments +K and +Na than in the C treatment resulting from higher concentrations of osmotica contributed to increasing both palisade cell diameters and the size of fully expanded leaves. Conclusions: Intermediate total tree leaf area in treatment +Na compared to treatments C and +K might result from the capacity of Na to substitute K in osmoregulatory functions, whereas it seemed unable to accomplish other important K functions that contribute to delaying leaf senescence. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explored the interaction between radiation of different wavelength and jasmonic acid (JA) or brassinosteroids (BR) on leaf senescence-induced oxidative stress. Three approaches were used: 1) jasmonic acid insensitive1-1 (jai1-1) and brassinosteroid-deficient [dumpy (dpy)] mutants were treated with red (R) or far-red (FR) radiation; 2) phytochromedeficient aurea (au) and high pigment-1 (hp-1) (radiation exaggerated response) mutants were treated with methyl jasmonate (MeJA) or epibrassinolide (epiBL); and 3) double mutants au jai1-1 and au dpy were produced. Leaf chlorophyll content, lipid peroxidation, and antioxidant enzyme activities were determined. After senescence induction in detached leaves, we verified that the patterns of chlorophyll degradation of hormonal and photomorphogenic mutants were not significantly different in comparison with original cv. Micro-Tom (MT). Moreover, there was no significant change in lipid peroxidation measured as malondialdehyde (MDA) production, as well as catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) activities in the hormonal mutants. Exogenous BR increased CAT and APX activities in MT, au, and hp-1. As concerns the double mutants, severe reduction in H2O2 production which was not accompanied by changes in MDA content, and CAT and APX activities was observed during senescence in au dpy. The results suggest that JA and BR do not participate in light signaling pathway during leaf senescence-induced oxidative stress. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Agricultura) - FCA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FCAV

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowing the structure and distribution of nutrients in plant tissues can clarify some mechanisms of pathogen attack in plants and plant defense against infection, thus helping management strategies. The aim of this study was verify differences in distribution of mineral nutrients in coffee leaf tissues around foliar lesions of bacterial blight of coffee, blister spot, cercospora leaf, phoma leaf spot and coffee leaf rust. Fragments of leaf tissue surrounding the lesions were dehydrated in silica gel, carbon covered and subjected to X-ray microanalysis (MAX). Thirty-three chemical elements were detected in leaf tissue; however, there was variation in potassium and calcium contents surrounding the lesions. The highest potassium content was found in asymptomatic tissues surrounding the lesions, decreasing toward the transition zone and reaching minimum content in symptomatic tissues. The highest calcium content was found in symptomatic tissues, decreasing toward the transition zone and reaching minimum content in asymptomatic tissues. Therefore, MAX can be used to analyze the composition and distribution of nutrients in plant tissues and, if associated with mineral nutrition, it may help understand host-pathogen relationships and plant disease management.