826 resultados para guarani aquifer
Resumo:
Increasing dependence on groundwater in the Wakal River basin, India, jeopardizes water supply sustainability. A numerical groundwater model was developed to better understand the aquifer system and to evaluate its potential in terms of quantity and replenishment. Potential artificial recharge areas were delineated using landscape and hydrogeologic parameters, Geographic Information System (GIS), and remote sensing. Groundwater models are powerful tools for recharge estimation when transmissivity is known. Proper recharge must be applied to reproduce field-measured heads. The model showed that groundwater levels could decline significantly if there are two drought years in every four years that result in reduced recharge, and groundwater withdrawal is increased by 15%. The effect of such drought is currently uncertain however, because runoff from the basin is unknown. Remote sensing and GIS revealed areas with slopes less than 5%, forest cover, and Normalized Difference Vegetative Index greater than 0.5 that are suitable recharge sites.
Resumo:
Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.
Resumo:
The understanding of the occurrence and flow of groundwater in the subsurface is of fundamental importance in the exploitation of water, just like knowledge of all associated hydrogeological context. These factors are primarily controlled by geometry of a certain pore system, given the nature of sedimentary aquifers. Thus, the microstructural characterization, as the interconnectivity of the system, it is essential to know the macro properties porosity and permeability of reservoir rock, in which can be done on a statistical characterization by twodimensional analysis. The latter is being held on a computing platform, using image thin sections of reservoir rock, allowing the prediction of the properties effective porosity and hydraulic conductivity. For Barreiras Aquifer to obtain such parameters derived primarily from the interpretation of tests of aquifers, a practice that usually involves a fairly complex logistics in terms of equipment and personnel required in addition to high cost of operation. Thus, the analysis and digital image processing is presented as an alternative tool for the characterization of hydraulic parameters, showing up as a practical and inexpensive method. This methodology is based on a flowchart work involving sampling, preparation of thin sections and their respective images, segmentation and geometric characterization, three-dimensional reconstruction and flow simulation. In this research, computational image analysis of thin sections of rocks has shown that aquifer storage coefficients ranging from 0,035 to 0,12 with an average of 0,076, while its hydrogeological substrate (associated with the top of the carbonate sequence outcropping not region) presents effective porosities of the order of 2%. For the transport regime, it is evidenced that the methodology presents results below of those found in the bibliographic data relating to hydraulic conductivity, mean values of 1,04 x10-6 m/s, with fluctuations between 2,94 x10-6 m/s and 3,61x10-8 m/s, probably due to the larger scale study and the heterogeneity of the medium studied.
Ocorrência de compostos de interesse emergente no aquífero Dunas-Barreiras e nos esgotos de Natal/RN
Resumo:
The detection of emerging interest microcontaminants in environmental samples of surface water, groundwater, drinking water, wastewater and effluents from water and sewage treatment plants (WTP and STP), in many countries, suggests these pollutants are widespread in the environment, mainly in urban areas. This is a reason for great concern, since many of these compounds are potentially harmful for humans other living beings, and they are not efficiently removed in the majority of WTP and STP, which is exacerbated by precariousness of water supply and sanitation services. In Natal, like other Brazilian cities, the sewage system serves only part of the urban area (about 30%), so that the rest of the wastewater is infiltrated in the sandy soil of the region in cesspool-dry well systems. This has resulted in contamination of groundwater in the area (sand-dune barrier aquifer, which supplies more than 50% of the city population), which has been observed by the increase in nitrate concentration in supply wells. The vulnerability of the sanddune barrier aquifer, combined with reports of the presence of emerging interest microcontaminants in Brazil and worldwide, led to this research, which investigated the occurrence of fifteen microcontaminants in Natal groundwater and sewage. Samples were collected at five wells used for water supply, the raw sewage and the effluents from biological reactors from STP (UASB and activated sludge reactors). Two samples of each sample were taken, with one week apart between the samples. To determine the contaminants, extraction of aquifer water, and raw and treated sewage samples were performed, through the technique of using SPE Strata X cartridge (Phenomenex®) to the aquifer water, and Strata SAX and Strata X (Phenomenex® ) for samples of raw and treated sewage. Subsequently the extracts were analyzed using GC-MS technique. Much of the analyzed microcontaminants were detected in groundwater and sewage. The concentrations in groundwater are generally lower than those found in the sewers. Some of the compounds (estrone, estradiol, bisphenol A, caffeine, diclofenac, naproxen, paracetamol and ibuprofen) are partially removed at STP.
Resumo:
A type of macro drainage solution widely used in urban areas with predomi-nance of closed catchments (basins without outlet) is the implementation of detention and infiltration reservoirs (DIR). This type of solution has the main function of storing surface runoff and to promote soil infiltration and, consequently, aquifer recharge. The practice is to avoid floods in the drainage basin low-lying areas. The catchment waterproofing reduces the distributed groundwater recharge in urban areas, as is the case of Natal city, RN. However, the advantage of DIR is to concentrate the runoff and to promote aquifer recharge to an amount that can surpass the distributed natu-ral recharge. In this paper, we proposed studying a small urban drainage catchment, named Experimental Mirassol Watershed (EMW) in Natal, RN, whose outlet is a DIR. The rainfall-runoff transformation processes, water accumulation in DIR and the pro-cess of infiltration and percolation in the soil profile until the free aquifer were mod-eled and, from rainfall event observations, water levels in DIR and free aquifer water level measurements, and also, parameter values determination, it is was enabled to calibrate and modeling these combined processes. The mathematical modeling was carried out from two numerical models. We used the rainfall-runoff model developed by RIGHETTO (2014), and besides, we developed a one-dimensional model to simu-late the soil infiltration, percolation, redistribution soil water and groundwater in a combined system to the reservoir water balance. Continuous simulation was run over a period of eighteen months in time intervals of one minute. The drainage basin was discretized in blocks units as well as street reaches and the soil profile in vertical cells of 2 cm deep to a total depth of 30 m. The generated hydrographs were transformed into inlet volumes to the DIR and then, it was carried out water balance in these time intervals, considering infiltration and percolation of water in the soil profile. As a re-sult, we get to evaluate the storage water process in DIR as well as the infiltration of water, redistribution into the soil and the groundwater aquifer recharge, in continuous temporal simulation. We found that the DIR has good performance to storage excess water drainage and to contribute to the local aquifer recharge process (Aquifer Dunas / Barreiras).
Resumo:
The study area is within the Pirangi River Basin, eastern sector of Rio Grande do Norte state, where is located of the Parnamirim city. It has an area of approximately 370 km². Urbanization has developed much fast without an appropriate infrastructure, mainly by the lack of sewage systems, with risks of contamination of groundwater that may cause serious damage to the health of the population. The Barreiras Aquifer System groundwater in the area represents the main source of water supply for urban and rural populations. The use of groundwater occurs without adequate planning and therefore, important recharge areas are being occupied. This study was conducted to quantify the use and evaluation of the potential of groundwater, in order to increase good water quality supply and lower risks of being affected by polluting activities. With these objectives, the following activities were carried out: 268 points of water have been registered; characterization of the lithological, thickness and hydrogeological structure of the Barreiras aquifer, based on the correlation of well logs; and evaluation of hydrodynamic parameters of the aquifer, from the interpretation of results well pumping tests. It was found that the saturated thickness increases from west to east towards the sea, with values ranging from 15,47-56,5 m with an average of 32,45 m. The hydrodynamic parameters using Cooper-Jacob method were: average transmissivity of 5,9x10-3 m²/s and average hydraulic conductivity 2,82x10-4 m/s. The effective porosity is of 15%, obtained by applying Biecinski equation. The potentiometric map shows the main direction of groundwater flow, from west to east, and identifies the recharge areas corresponding to the region of the tablelands of the "Barreiras". The river valleys refer to the discharge areas of the aquifer system. The Recharge was estimated at 253 mm/year, which corresponds to the 16.4% rate of infiltration.
Resumo:
The study area is within the Pirangi River Basin, eastern sector of Rio Grande do Norte state, where is located of the Parnamirim city. It has an area of approximately 370 km². Urbanization has developed much fast without an appropriate infrastructure, mainly by the lack of sewage systems, with risks of contamination of groundwater that may cause serious damage to the health of the population. The Barreiras Aquifer System groundwater in the area represents the main source of water supply for urban and rural populations. The use of groundwater occurs without adequate planning and therefore, important recharge areas are being occupied. This study was conducted to quantify the use and evaluation of the potential of groundwater, in order to increase good water quality supply and lower risks of being affected by polluting activities. With these objectives, the following activities were carried out: 268 points of water have been registered; characterization of the lithological, thickness and hydrogeological structure of the Barreiras aquifer, based on the correlation of well logs; and evaluation of hydrodynamic parameters of the aquifer, from the interpretation of results well pumping tests. It was found that the saturated thickness increases from west to east towards the sea, with values ranging from 15,47-56,5 m with an average of 32,45 m. The hydrodynamic parameters using Cooper-Jacob method were: average transmissivity of 5,9x10-3 m²/s and average hydraulic conductivity 2,82x10-4 m/s. The effective porosity is of 15%, obtained by applying Biecinski equation. The potentiometric map shows the main direction of groundwater flow, from west to east, and identifies the recharge areas corresponding to the region of the tablelands of the "Barreiras". The river valleys refer to the discharge areas of the aquifer system. The Recharge was estimated at 253 mm/year, which corresponds to the 16.4% rate of infiltration.
Resumo:
The use of chemical fertilization in arable perimeters provides increased productivity, though it can eventually lead to a qualitative depreciation of groundwater sources, especially if such sources are unconfined in nature. In this context, this thesis presents results from an analysis of the level of natural protection of the Barreiras Aquifer in an area located on the eastern coast of the Rio Grande do Norte State - Brazil. Such an aquifer is clastic in nature and has an unconfined hydraulic character, which clearly makes it susceptible to contamination from surface ground loads with contaminants associated with the leaching of excess fertilizers not absorbed by ground vegetation. The methodology used was based on the use of hydro-geophysical data, particularly inverse models of vertical electrical soundings (VES) and information from well profiles, allowing the acquisition of longitudinal conductance cartographies (S), data in mili-Siemens (mS), and the vulnerability of the aquifer. Such maps were prepared with emphasis to the unsaturated overlying zone, highlighting in particular its thickness and occurrence of clay lithologies. Thus, the longitudinal conductance and aquifer vulnerability reveal areas more susceptible to contamination in the northeast and east-central sections of the study area, with values equal to or less than 10mS and greater than or equal to 0,50, respectively. On the other hand, the southwestern section proved to be less susceptible to contamination, whose longitudinal conductance and vulnerability indices are greater than or equal to 30mS and less than or equal to 0,40, respectively.
Resumo:
The use of chemical fertilization in arable perimeters provides increased productivity, though it can eventually lead to a qualitative depreciation of groundwater sources, especially if such sources are unconfined in nature. In this context, this thesis presents results from an analysis of the level of natural protection of the Barreiras Aquifer in an area located on the eastern coast of the Rio Grande do Norte State - Brazil. Such an aquifer is clastic in nature and has an unconfined hydraulic character, which clearly makes it susceptible to contamination from surface ground loads with contaminants associated with the leaching of excess fertilizers not absorbed by ground vegetation. The methodology used was based on the use of hydro-geophysical data, particularly inverse models of vertical electrical soundings (VES) and information from well profiles, allowing the acquisition of longitudinal conductance cartographies (S), data in mili-Siemens (mS), and the vulnerability of the aquifer. Such maps were prepared with emphasis to the unsaturated overlying zone, highlighting in particular its thickness and occurrence of clay lithologies. Thus, the longitudinal conductance and aquifer vulnerability reveal areas more susceptible to contamination in the northeast and east-central sections of the study area, with values equal to or less than 10mS and greater than or equal to 0,50, respectively. On the other hand, the southwestern section proved to be less susceptible to contamination, whose longitudinal conductance and vulnerability indices are greater than or equal to 30mS and less than or equal to 0,40, respectively.
Resumo:
Estudo sobre o Hip Hop como processo comunicacional e sociabilidade entre jovens indígenas de Dourados, Mato Grosso do Sul, para verificar quais os principais objetivos da prática do movimento Hip Hop, compreender se serve como comunicação, contribui para o fortalecimento da língua guarani ou gera novas tensões sociais na reserva. Para tanto, foi analisado aspectos históricos do movimento, passando pelos Estudos Culturais, e como Movimento Social, dando início à discussão de uma voz alternativa por meio do Hip Hop. Do ponto de vista metodológico, trata-se de um de estudo de caso, com representantes dos grupos de jovens Brô Mc's e Jovens Conscientes, das reservas Jaguapirú e Bororó, das etnias Guarani-Kaiowá de Dourados (MS). Foram realizadas entrevistas semiestruturadas junto a jovens que participaram das oficinas de hip hop, das lideranças indígenas e professores. A investigação é complementada pela pesquisa bibliográfica, documental e análises das letras de rap em confrontação com as visões da imprensa, a partir da análise dos jornais Diário MS e O Progresso. Os resultados apontam que os jovens se apropriam de uma cultura global para transformar o ambiente local com objetivo de preservar a língua guarani, uma alternativa para o conhecimento, logo para não seguirem caminhos como o das drogas. Negociando falas sobre sua realidade, dentro e fora da reserva, já que nos meios de comunicação locais há pouco espaço para a voz dos indígenas e dentro da reserva ainda há contestação do movimento em um contexto político, na tentativa de atingir uma cultura “pura”, devido à preocupação dos mais velhos com a perda de território.
Resumo:
Carbon dioxide deep geological storage, especially in deep saline aquifers, is one of the preferred technological options to mitigate the effects of greenhouse gases emissions. Thus, in the last decade, studies characterising the behaviour of potential CO2 deep geological storage sites along with thorough safety assessments have been considered essential in order to minimise the risks associated with these sites. The study of natural analogues represents the best source of reliable information about the expected hydrogeochemical processes involved in the CO2 storage in such deep saline aquifers. In this work, a comprehensive study of the hydrogeochemical features and processes taking place at the natural analogue of the Alicún de las Torres thermal system (Betic Cordillera) has been conducted. Thus, the main water/CO2/rock interaction processes occurring at the thermal system have been identified, quantified and modelled, and a principle conclusion is that the hydrogeochemical evolution of the thermal system is controlled by a global dedolomitization process triggered by gypsum dissolution. This geochemical process generates a different geochemical environment to that which would result from the exclusive dissolution of carbonates from the deep aquifer, which is generally considered as the direct result of CO2 injection in a deep carbonate aquifer. Therefore, discounting of the dedolomitization process in any CO2 deep geological storage may lead to erroneous conclusions. This process will also influence the porosity evolution of the CO2 storage formation, which is a very relevant parameter when evaluating a reservoir for CO2 storage. The geothermometric calculation performed in this work leads to estimate that the thermal water reservoir is located between 650 and 800 m depth, which is very close to the minimum required to inject CO2 in a deep geological storage. It is clear that the proper characterisation of the features and hydrogeochemical processes taking place at a natural system analogous to a man-made deep geological storage will provide useful conceptual, semi-quantitative and even quantitative information about the processes and consequences that may occur at the artificial storage system.
Resumo:
In Semarang City, groundwater has been exploited as a natural resource since 1841. The groundwater exploited in deep wells is concentrated in confined aquifers. The previous hydrogeological model was developed in one unit of aquifer and refined then by using several hydrostratigraphical units following a regional hydrogeological map without any further analysis. At present, there is a lack of precise hydrogeological model which integrates geological and hydrogeological data, in particular for multiple aquifers in Semarang. Thus, the aim of this paper is to develop a hydrogeological model for the multiple aquifers in Semarang using an integrated data approach. Groundwater samples in the confined aquifers have been analyzed to define the water type and its lateral distribution. Two hydrogeological cross sections were then created based on several borelog data to define a hydrostratigraphical unit (HSU). The HSU result indicates the hydrogeological model of Semarang consists of two aquifers, three aquitards, and one aquiclude. Aquifer 1 is unconfined, while Aquifer 2 is confined. Aquifer 2 is classified into three groups (2a, 2b, and 2c) based on analyses of major ion content and hydrostratigraphical cross sections.
Resumo:
Flow, recharge and transport dynamics in fractured rock aquifers with low lying rock outcrops is a largely unexplored area of study in hydrogeology. The purpose of this thesis is to examine these topics in an agricultural area in Eastern Ontario. The study consists of a regional scale groundwater quality study, an infiltration experiment that considers bacteria transport from the ground surface to a well, and a numerical modelling study that tests the parameters that affect surface infiltration of a tracer from a rock outcrop to a deeper horizontal fracture. In the water quality study, approximately 65% of the samples contained total coliform, 16% contained E. coli, and 1% contained nitrate-N at greater than 5 mg/L. Occurrence of E. coli increased when considering seasonality, where wells were drilled on rock outcrops, and for shallow well intervals. Nitrate-N did not occur above the Guidelines for Canadian Drinking Water Quality (Health Canada, 2012) of 10 mg/L. Rapid arrival times were observed in the infiltration study for both the microspheres (30 minutes) and a dye tracer (45 minutes) in a well approximately 6.0 m in horizontal and 2.8 m in vertical distance from the tracer source. Transport velocities were approximately 38.9 m/day for the dye tracer and 115.2 m/day for the colloidal tracer. Results of the model runs indicate that overburden can provide an effective protective layer to transport in fractures, that high groundwater velocities occur in larger fracture apertures and higher gradients dilute tracer concentrations, and that lower groundwater velocities occur with smaller fracture apertures and lower gradients result in elevated tracer concentrations. Lower rainfall rates, larger fracture apertures, early tracer time, larger gradients, and lower water levels maintained unsaturated conditions for longer time periods such that tracer transport was delayed until saturated conditions were attained. The overall heterogeneity of this aquifer environment creates a source water protection conundrum where the water quality is generally good, while transport can occur very quickly in proximity to rock outcrops and in areas with limited overburden.
Resumo:
The feasibility of monitoring fluid flow subsurface processes that result in density changes, using the iGrav superconducting gravimeter, is investigated. Practical targets include steam-assisted gravity drainage (SAGD) bitumen depletion and water pumping from aquifers, for which there is currently a void in low-impact, inexpensive monitoring techniques. This study demonstrates that the iGrav has the potential to be applied to multi-scale and diverse reservoirs. Gravity and gravity gradient signals are forward modeled for a real SAGD reservoir at two time steps, and for surface-fed and groundwater-fed aquifer pumping models, to estimate signal strength and directional dependency of water flow. Time-lapse gravimetry on small-scale reservoirs exhibits two obstacles, namely, a µgal sensitivity requirement and high noise levels in the vicinity of the reservoir. In this study, both limitations are overcome by proposing (i) a portable superconducting gravimeter, and (ii) a pair of instruments under various baseline geometries. This results in improved spatial resolution for locating depletion zones, as well as the cancellation of noise common in both instruments. Results indicate that a pair of iGrav superconducting gravimeters meet the sensitivity requirements and the spatial focusing desired to monitor SAGD bitumen migration at the reservoir scales. For SAGD reservoirs, the well pair separation, reservoir depth, and survey sampling determine the resolvability of individual well pair depletion patterns during the steam chamber rising phase, and general reservoir depletion patterns during the steam chamber spreading phase. Results show that monitoring water table elevation changes due to pumping and tracking whether groundwater or surface water is being extracted are feasible.
Resumo:
Tomando como punto de partida mi colaboración en la recolección y la sistematización de datos vinculados al relevamiento territorial en distintas comunidades guaraníes del noroeste salteño, en apoyo al Programa de Relevamiento Territorial de Comunidades Indígenas (Re.Te.CI) y en el marco de la Ley de Emergencia en materia de posesión y propiedad comunitaria indígena (Ley 26.160), el presente artículo describe y analiza distintos momentos de la implementación del programa. Fundamentalmente, exploro las formas particulares que el mismo asumió en la provincia de Salta focalizándome en el Departamento General San Martín, siendo esta la región de mayor diversidad étnica de la provincia. Inspirada en la propuesta de Ferguson y Gupta (2002) de pensar al Estado como “una experiencia vivida” utilizo materiales etnográficos de tres comunidades indígenas donde se aplicó el programa de relevamiento territorial y me centro en una de ellas para pensar las formas que adopta la relación entre el Estado y los pueblos indígenas.