998 resultados para growing parameters
Resumo:
The present thesis is centered around the study of electrical and thermal properties of certain selected photonic materials.We have studied the electrical conduction mechanism in various phases of certain selected photonic materials and those associated with different phase transitions occurring in them. A phase transition leaves its own impressions on the key parameters like electrical conductivity and dielectric constant. However, the activation energy calculation reveals the dominant factor responsible for conduction process.PA measurements of thermal diffusivity in certain other important photonic materials are included in the remaining part of the research work presented in this thesis. PA technique is a promising tool for studying thermal diffusivities of solid samples in any form. Because of its crucial role and common occurrence in heat flow problems, the thermal diffusivity determination is often necessary and knowledge of thermal diffusivity can intum be used to calculate the thermal conductivity. Especially,knowledge of the thermal diffusivity of semiconductors is important due to its relation to the power dissipation problem in microelectronic and optoelectronic devices which limits their performances. More than that, the thermal properties, especially those of thin films are of growing interest in microelectronics and microsystems because of the heat removal problem involved in highly integrated devices. The prescribed chapter of the present theis demonstrates how direct measurement of thermal diffusivity can be carried out in thin films of interest in a simple and elegant manner using PA techniques. Although results of only representative measurements viz; thermal diffusivity values in Indium, Aluminium, Silver and CdS thin films are given here, evaluation of this quantity for any photonic and / electronic material can be carried out using this technique in a very simple and straight forward manner.
Resumo:
Soil moisture plays a cardinal role in sustaining eclological balance and agricultural development – virtually the very existence of life on earth. Because of the growing shortage of water resources, we have to use the available water most efficiently by proper management. Better utilization of rainfall or irrigation management depends largely on the water retention characteristics of the soil.Soil water retention is essential to life and it provides an ongoing supply of water to plants between periods of irrigation so as to allow their continued growth and survival.It is essential to maintain readily available water in the soil if crops are to sustain satisfactory growth. The plant growth may be retarded if the soil moisture is either deficient or excessive. The optimum moisture content is that moisture which leads to optimum growth of plant. When watering is done, the amount of water supplied should be such that the water content is equal to the field capacity that is the water remained in the saturated soil after gravitational drainage. Water will gradually be utilized consumptively by plants after the water application, and the soil moisture will start falling. When the water content in the soil reaches the value known as permanent wilting point (when the plant starts wilting) fresh dose of irrigation may be done so that water content is again raised to the field capacity of soil.Soil differ themselves in some or all the properties depending on the difference in the geotechnical and environmental factors. Soils serve as a reservoir of the nutrients and water required for crops.Study of soil and its water holding capacity is essential for the efficient utilization of irrigation water. Hence the identification of the geotechnical parameters which influence the water retention capacity, chemical properties which influence the nutrients and the method to improve these properties have vital importance in irrigation / agricultural engineering. An attempt in this direction has been made in this study by conducting the required tests on different types of soil samples collected from various locations in Trivandrum district Kerala, with and without admixtures like coir pith, coir pith compost and vermi compost. Evaluation of the results are presented and a design procedure has been proposed for a better irrigation scheduling and management.
Resumo:
This thesis presents a detailed account of a cost - effective approach towards enhanced production of alkaline protease at profitable levels using different fermentation designs employing cheap agro-industrial residues. It involves the optimisation of process parameters for the production of a thermostable alkaline protease by Vibrio sp. V26 under solid state, submerged and biphasic fermentations, production of the enzyme using cell immobilisation technology and the application of the crude enzyme on the deproteinisation of crustacean waste.The present investigation suggests an economic move towards Improved production of alkaline protease at gainful altitudes employing different fermentation designs utilising inexpensive agro-industrial residues. Moreover, the use of agro-industrial and other solid waste substrates for fermentation helps to provide a substitute in conserving the already dwindling global energy resources. Another alternative for accomplishing economically feasible production is by the use of immobilisation technique. This method avoids the wasteful expense of continually growing microorganisms. The high protease producing potential of the organism under study ascertains their exploitation in the utilisation and management of wastes. However, strain improvement studies for the production of high yielding variants using mutagens or by gene transfer are required before recommending them to Industries.Industries, all over the world, have made several attempts to exploit the microbial diversity of this planet. For sustainable development, it is essential to discover, develop and defend this natural prosperity. The Industrial development of any country is critically dependent on the intellectual and financial investment in this area. The need of the hour is to harness the beneficial uses of microbes for maximum utilisation of natural resources and technological yields. Owing to the multitude of applications in a variety of industrial sectors, there has always been an increasing demand for novel producers and resources of alkaline proteases as well as for innovative methods of production at a commercial altitude. This investigation forms a humble endeavour towards this perspective and bequeaths hope and inspiration for inventions to follow.
Resumo:
The authors apply the theory of photothermal lens formation and also that of pure optical nonlinearity to account for the phase modulation in a beam as it traverses a nonlinear medium. It is used to simultaneously determine the nonlinear optical refraction and the thermo-optic coefficient. They demonstrate this technique using some metal phthalocyanines dissolved in dimethyl sulfoxide, irradiated by a Q-switched Nd:YAG laser with 10 Hz repetition rate and a pulse width of 8 ns. The mechanism for reverse saturable absorption in these materials is also discussed.
Resumo:
Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology
Communication Parameters in the Marine Fisheries Sector of Kerala-A Study of Kollam Coastal Villages
Resumo:
Department of Applied Economics,Cochin University of Science and Technology
Resumo:
In the present scenario of energy demand overtaking energy supply top priority is given for energy conservation programs and policies. Most of the process plants are operated on continuous basis and consumes large quantities of energy. Efficient management of process system can lead to energy savings, improved process efficiency, lesser operating and maintenance cost, and greater environmental safety. Reliability and maintainability of the system are usually considered at the design stage and is dependent on the system configuration. However, with the growing need for energy conservation, most of the existing process systems are either modified or are in a state of modification with a view for improving energy efficiency. Often these modifications result in a change in system configuration there by affecting the system reliability. It is important that system modifications for improving energy efficiency should not be at the cost of reliability. Any new proposal for improving the energy efficiency of the process or equipments should prove itself to be economically feasible for gaining acceptance for implementation. In order to arrive at the economic feasibility of the new proposal, the general trend is to compare the benefits that can be derived over the lifetime as well as the operating and maintenance costs with the investment to be made. Quite often it happens that the reliability aspects (or loss due to unavailability) are not taken into consideration. Plant availability is a critical factor for the economic performance evaluation of any process plant.The focus of the present work is to study the effect of system modification for improving energy efficiency on system reliability. A generalized model for the valuation of process system incorporating reliability is developed, which is used as a tool for the analysis. It can provide an awareness of the potential performance improvements of the process system and can be used to arrive at the change in process system value resulting from system modification. The model also arrives at the pay back of the modified system by taking reliability aspects also into consideration. It is also used to study the effect of various operating parameters on system value. The concept of breakeven availability is introduced and an algorithm for allocation of component reliabilities of the modified process system based on the breakeven system availability is also developed. The model was applied to various industrial situations.
Resumo:
Xylanases with hydrolytic activity on xylan, one of the hemicellulosic materials present in plant cell walls, have been identified long back and the applicability of this enzyme is constantly growing. All these applications especially the pulp and paper industries require novel enzymes. There has been lot of documentation on microbial xylanases, however, none meeting all the required characteristics. The characters being sought are: higher production, higher pH and temperature optima, good stabilities under these conditions and finally the low associated cellulase and protease production. The present study analyses various facets of xylanase biotechnology giving emphasis on bacterial xylanases. Fungal xylanases are having problems like low pH values for both enzyme activity and growth. Moreover, the associated production of cellulases at significant levels make fungal xylanases less suitable for application in paper and pulp industries.Bacillus SSP-34 selected from 200 isolates was clearly having xylan catabolizing nature distinct from earlier reports. The stabilities at higher temperatures and pH values along with the optimum conditions for pH and temperature is rendering Bacillus SSP-34 xylanase more suitable than many of the previous reports for application in pulp and paper industries.Bacillus SSP-34 is an alkalophilic thertmotolerant bacteria which under optimal cultural conditions as mentioned earlier, can produce 2.5 times more xylanase than the basal medium.The 0.5% xylan concentration in the medium was found to the best carbon source resulting in 366 IU/ml of xylanase activity. This induction was subjected to catabolite repression by glucose. Xylose was a good inducer for xylanase production. The combination of yeast extract and peptone selected from several nitrogen sources resulted in the highest enzyme production (379+-0.2 IU/ml) at the optimum final concentration of 0.5%. All the cultural and nutritional parameters were compiled and comparative study showed that the modified medium resulted in xylanase activity of 506 IU/ml, 5 folds higher than the basal medium.The novel combination of purification techniques like ultrafiltraton, ammonium sulphate fractionation, DEAE Sepharose anion exchange chromatography, CM Sephadex cation exchange chromatography and Gel permeation chromatography resulted in the purified xylanase having a specific activity of 1723 U/mg protein with 33.3% yield. The enzyme was having a molecular weight of 20-22 kDa. The Km of the purified xylanase was 6.5 mg of oat spelts xylan per ml and Vmax 1233 µ mol/min/mg protein.Bacillus SSP-34 xylanase resulted in the ISO brightness increase from 41.1% to 48.5%. The hydrolytic nature of the xylanase was in the endo-form.Thus the organism Bacillus SSP-34 was having interesting biotechnological and physiological aspects. The SSP-34 xylanase having desired characters seems to be suited for application in paper and pulp industries.
Resumo:
In the present work we report the preparation details studies on ZnO thin films. ZnO thin films are prepared using cost effective deposition technique viz., Chemical Spray Pyrolysis (CSP). The method is very effective for large area preparation of the ZnO thin film. A new post-deposition process could also be developed to avoid the adsorption of oxygen that usually occurs after the spraying process i.e., while cooling. Studies were done by changing the various deposition parameters for optimizing the properties of ZnO thin film. Moreover, different methods of doping using various elements are also tried to enhance the conductivity and transparency of the film to make these suitable for various optoelectronic applications.
Resumo:
Faculty of Marine Sciences,Cochin University of Science and Technology
Resumo:
Aquaculture has developed to become one of the fastest growing food producing sectors in the world.Today India is one among the major shrimp producing countries in the world.There are extensive and intensive shrimp culture practices. In extensive shrimp culture, shrimps are stocked at low densities (< 25 PLs m'2)in large ponds or tidal enclosures in which little or no management is exercised or possible. Farmers depend almost entirely on natural conditions in extensive cultures. Intensive shrimp culture is carried out in high densities (>200 PLs m'2). Much of the world shrimp production still comes from extensive culture.There is a growing demand for fish and marine products for human and animal consumption. This demand has led to rapid growth of aquaculture, which some times has been accompanied by ecological impacts and economic loss due to diseases. The expansion of shrimp culture always accompanies local environmental degradation and occurrence of diseases.Disease out breaks is recognised as a significant constraint to aquaculture production. Environmental factors, water quality, pollution due to effluent discharge and pathogenic invasion due to vertical and horizontal transmission are the main causes of shrimp disease out breaks. Nutritional imbalance, toxicant and other pollutants also account for the onset of diseases. pathogens include viruses, bacteria, fungi and parasites.Viruses are the most economically significant pathogens of the cultured shrimps world wide. Disease control in shrimp aquaculture should focus first on preventive measures for eliminating disease promoting factors.ln order to design prophylactic and proactive measures against shrimp diseases, it is mandatory to understand the immune make up of the cultivable species, its optimum culture conditions and the physico chemical parameters of the rearing environment. It has been proven beyond doubt that disease is an end result of complex interaction of environment, pathogen and the host animal. The aquatic environment is abounded with infectious microbes.The transmission of disease in this environment is extremely easy, especially under dense, culture conditions. Therefore, a better understanding of the immune responses of the cultured animal in relation to its environmental alterations and microbial invasions is essential indevising strategic measures against aquaculture loss due to diseases. This study accentuate the importance of proper and regular health monitoring in shrimps employing the most appropriate haematological biomarkers for application of suitable prophylactic measures in order to avoid serious health hazards in shrimp culture systems.
Resumo:
This thesis entitled seasonal and interannual variability of sea level and associated surface meteorological parameters at cochin.The interesting aspect of studying sea level variability on different time scales can be attributed to the diversity of its applications.Study of tides could perhaps be the oldest branch of physical oceanography.The thesis is presented in seven chapters. The first chapter gives, apart from a general introduction, a survey of literature on sea level variability on different time scales - tidal, seasonal and interannual (geological scales excluded), with particular emphasis on the work carried out in the Indian waters. The second chapter is devoted to the study of observed tides at Cochin on seasonal and interannual time scales using hourly water level data for the period 1988-1993. The third chapter describes the long-term climatology of some important surface oceanographic and meteorological parameters (at Cochin) which are supposed to affect the sea level. The fourth chapter addresses the problem of seasonal forecasting of the meteorological and oceanographic parameters at Cochin using autoregressive, sinusoidal and exponentially weighted moving average techniques and testing their accuracy with the observed data for the period 1991-1993. The fifth chapter describes the seasonal cycles of sea level and the driving forces at 16 stations along the Indian subcontinent. It also addresses the observed interannual variability of sea level at 15 stations using available multi-annual data sets. The sixth chapter deals with the problem of coastal trapped waves between Cochin and Beypore off the Kerala coast using sea level and atmospheric pressure data sets for the year 1977. The seventh and the last chapter contains the summary and conclusions and future outlook based on this study.
Resumo:
The intention of the present thesis work is to understand the physical processes responsible for climatic variability and predictability of the Indian subcontinent. The study is expected to delineate and emphasize the various boundaries and areas of transition and bring out the regional and temporal characteristics of the meteorological distribution of the country. The results obtained from the study is expected to provide a better understanding the physics of Indian cl imate, which can be incorporated for numerical weather prediction. The results obtained from the present study can be incorporated for climate modelling and long-term prediction of the meteorological parameters over Indian subcontinent
Resumo:
The Indian edible oyster Crassostrea madrasensis (Preston) is known to be a highly suitable candidate species for culture. Though Q, madrasensis has been subjected to intensive research, there has been no significant attempt to culture this oyster commercially. One major reason for the lack of interest in oyster culture could be the disparity in growth, survival and production reported by earlier workersf from different regions along the Indian coast. Greater predictability of production can create confidence and encourage entrepreneurs interested in oyster culture. The present study, which is a detailed investigation on the influence of various environmental variables on growth and reproduction of Q, madrasensis, is not confined to the impact of only hydrological parameters but is also extended to study the effect of different degrees of aerial exposure on growth and survival. The main objective of the study is to develop a background for subsequent development of a site suitability index for culture of Q, madrasensis along the Indian coast. Two sets of experiments were conducted during the present study. Details of the experiments are presented in the thesis under two major chapters comprising four sections each. Each chapter has a separate introduction, materials and methods, results and discussion. .
Resumo:
It has become clear over the last few years that many deterministic dynamical systems described by simple but nonlinear equations with only a few variables can behave in an irregular or random fashion. This phenomenon, commonly called deterministic chaos, is essentially due to the fact that we cannot deal with infinitely precise numbers. In these systems trajectories emerging from nearby initial conditions diverge exponentially as time evolves)and therefore)any small error in the initial measurement spreads with time considerably, leading to unpredictable and chaotic behaviour The thesis work is mainly centered on the asymptotic behaviour of nonlinear and nonintegrable dissipative dynamical systems. It is found that completely deterministic nonlinear differential equations describing such systems can exhibit random or chaotic behaviour. Theoretical studies on this chaotic behaviour can enhance our understanding of various phenomena such as turbulence, nonlinear electronic circuits, erratic behaviour of heart and brain, fundamental molecular reactions involving DNA, meteorological phenomena, fluctuations in the cost of materials and so on. Chaos is studied mainly under two different approaches - the nature of the onset of chaos and the statistical description of the chaotic state.