922 resultados para glycol methacrylate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the reactive extrusion process for polymerization, the chemical calorific effect has a great influence on the temperature. In order to quantitatively analyze the polymerization trend and optimize the processing conditions, the phenomena of the chemical calorific effect during reactive extrusion processes for free radical polymerization were analyzed. Numerical computation expressions of the heat of chemical reaction and the reactive calorific intensity were deduced, and then a numerical simulation of the reactive extrusion process for the polymerization of n-butyl methacrylate was carried out. The evolutions of the heat of chemical reaction and the reactive calorific intensity along the! axial direction of the extruder are presented, on the basis of which reactive processing conditions can be optimized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the film thickness (l(0)) effect on the phase and dewetting behaviors of the blend film of poly(methyl methacrylate)/poly (styrene-ran-acrylonitrile) (PMMA/SAN) has been studied by in situ atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The thinner film shows the more compatibility of the blend, and the phase separation of the film occurs at l(0) > 5R(g) (radius of gyration). An initially time-independent q*, the characteristic wavenumber of the phase image, which is in good agreement of Cahn's linearized theory for the early stage of spinodal decomposition, has been obtained in real space and discussed in detail. For 5R(g) > l(0) > 3R(g), a "pseudo-dewetting/(phase separation + wetting)" behavior occurs, where the pseudo-wetting is driven by the concentration fluctuation mechanism. For 10 < 3R(g), a "real dewetting/(phase separation + wetting)" behavior occurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gel effect in the reactive extrusion process for free radical polymerization in a closely intermeshing co-rotating twin screw extruder was investigated. First the reaction kinetic model was constructed mainly on the basis of entanglement theory. Next, numerical calculation expressions for the initiator and monomer concentrations, monomer conversion, average molecular weight and apparent viscosity were deduced. Finally, the evolution of the above variables were shown and discussed for the example of butyl methacrylate. The simulated results of the monomer conversion are in good agreement with experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel fluorescent dye labeled H-shaped block copolymer, (PMMA-Fluor-PS)(2)-PEO-(PS-Fluor-PMMA)(2), is synthesized by the combination of atom transfer radical polymerization (ATRP) and anionic polymerization (AP). To obtain the designated structure of the copolymer, a macroinitiator, 2,2-dichloro acetyl-PEO-2,2-dichloro acetyl (DCA-PEO-DCA), was prepared from DCAC and poly(ethylene oxide). The copolymer was characterized by H-1 NMR, GPC and fluorescence spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-solids, low-viscosity, stable poly(acrylamide-co-acrylic acid) aqueous latex dispersions were prepared by the dispersion polymerization of acrylamide (AM) and acrylic acid (AA) in an aqueous solution of ammonium sulfate (AS) medium using anionic polyelectrolytes as stabilizers. The anionic polyelectrolytes employed include poly(2-acrylamido-2-methylpropanesulfonic acid sodium) (PAMPSNa) homopolymer and random copolymers of 2-acrylamido-2-methylpropanesulfonic acid sodium (AMPSNa) with methacrylic acid sodium (MAANa), acrylic acid sodium (AANa) or acrylamide (AM). The influences of stabilizer's structure, composition, molecular weight and concentration, AA/AM molar feed ratio, total monomer, initiator and aqueous solution of AS concentration, and stirring speed on the monomer conversion, the particle size and distribution, the bulk viscosity and stability of the dispersions, and the intrinsic viscosity of the resulting copolymer were systematically investigated. Polydisperse spherical as well as ellipsoidal particles were formed in the system. The broad particle size distributions indicated that coalescence of the particles takes place to a greater extent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase diagrams corresponding to aqueous biphasic systems of salt (the organic ionic liquid of salts [C(4)mim]Cl, [C(6)mim]Cl, and [C(8)mim]Cl) + salt (K3PO4, K2CO3) + water were determined at 298.15 K. The binodal curve was fitted to the Merchuk equation. Tie lines assigned from mass phase ratios according to the lever arm rule were satisfactorily described using the Othmer-Tobias and Bancroft equations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pentacene thin-film transistors have been obtained using polymethyl-methacrylate-co-glyciclyl-methacrylate (PNIMA-GMA) as the gate dielectric. The optimum active layer thickness in thin-film transistors (OTFTs) was investigated. The present devices show a wide operation voltage range. The on/off current ratio is as high as 10(5). In linear region (V-DS = -2V), the field-effect mobility of device increases with the increase in gate field at low-voltage region (V-G < - 20 V), and a mobility of 0.33 cm(2)/Vs can be obtained when V-G > 20 V. In saturation region, the mobility increases linearly with the gate field, and a high mobility of 1.14 cm(2)/Vs can be obtained at V-G = -95V. The influence of voltage on mobility of device was investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase separation of bisphenol A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) thin blend film is suppressed by addition of solid epoxy oligomer. Epoxy has strong intermolecular interactions with both PC and PMMA, while PC and PMMA are quite incompatible with each other. Consequently, phase separation in the PC/PMMA blend film pushes epoxy to the interface; at the same time, PC and epoxy react readily at the interface to form a cross-linking structure, binding PMMA chains together. Therefore, the interface between PC and PMMA is effectively reinforced, and the PC/PMMA thin blend film is stabilized against phase separation. On the other hand, only an optimal content of epoxy (i.e., 10 wt %) can serve as an efficient interfacial agent. In contrast to the traditional reactive compatibilization, here we observed that the cross-linking structure along the interface is much more stable than block or graft copolymers. Atomic force microscopy (AFM) is used to characterize the morphological changes of the blend films as a function of annealing time. Two-dimensional fast Fourier transform (2D-FFT) of AFM data allows quantitative investigation of the scaling behavior of phase separation kinetics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nanocrystalline Gd2O3:Eu3+ powders with cubic phase were prepared by a combustion method in the presence of urea and glycol. The effects of the annealing temperature on the crystallization and luminescence properties were studied. The results of XRD show pure phase can be obtained, the average crystallite size could be calculated as 7, 8, 45, and 23 run for the precursor and samples annealed at 600, 700 and 800 degrees C, respectively, which coincided with the results from TEM images. The emission intensity, host absorption and charge transfer band intensity increased with increasing the temperature. The slightly broad emission peak at 610 nm for smaller particles can be observed. The ratio of host absorption to O-2-Eu3+ charge transfer band of smaller nanoparticles is much stronger compared with that for larger nanoparticles, furthermore, the luminescence lifetimes of nanoparticles increased with increasing particles size. The effects of doping concentration of Eu3+ on luminescence lifetimes and intensities were also discussed. The samples exhibited a higher quenching concentration of Eu3+, and luminescence lifetimes of nanoparticles are related to annealing temperature of samples and the doping concentration of Eu3+ ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graft copolymerization in the molten state is of fundamental importance as a probe of chemical modification and reactive compatibilization. However, few grafting kinetic studies on reactive extrusion have been carried out because of the inherent difficulties, as expected. In this work, we have studied chain propagation kinetics on melt grafting using pre-irradiated linear low density polyethylene (LLDPE) and three monomers, acrylic acid (AA), methacrylic acid (MAA), and methyl methacrylate (MMA), as the model system. We measured the apparent chain propagation rate coefficients of grafting (k(p,g)) and homopolymerization (k(p,h)) at an initial stage for the melt grafting by FT-IR spectroscopy and electron spin resonance spectroscopy. It was observed that the convective mixing affected the rate coefficients. The magnitude of k(p,h) and k(p,g) were in the same order, but k(p,h) was slightly larger than k(p,g) The k(p,g) of the three grafting systems increased in the order: LLDPE/MMA < LLDPE/MAA < LLDPE/AA. These results are explained in terms of phase separation, solubility, and inherent reactivity of the monomer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new process of graft copolymerization of poly(vinyl chloride) (PVC) and polyethylene (PE) with other monomers was developed. The grafted chlorinated poly(vinyl chloride) (CPVC) and chlorinated polyethylene (CPE) were synthesized by in situ chlorinating graft copolymerization (ISCGC) and were characterized. Convincing evidence for grafting and the structure of graft copolymers was obtained using FT-IR, H-1-NMR, gel permeation chromatography (GPC), and the vulcanized curves. Their mechanical properties were also measured. The results show that the products have different molecular structure from those prepared by other conventional graft processes. Their graft chains are short, being highly branched and chlorinated. The graft copolymers have no crosslinking structure. The unique molecular structure will make the materials equipped with special properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new method of reversibly moving US nanoparticles in the perpendicular direction was developed on the basis of the phase separation of block copolymer brushes. Polystyrene-b-(poly(methyl methaerylate)-co-poly(cadmium dimethacrylate)) (PS-b-(PMMA-co-PCdMA)) brushes were grafted from the silicon wafer by surface-initiated atom transfer radical polymerization (ATRP). By exposing the polymer brushes to H2S gas, PS-b-(PMNlA-co-PCdNlA) brushes were converted to polystyrene-b-(poly(methyl methacrylate) -co-poly(methacrylic acid)(CdS)) (PS-b-(PMMA-co-PMAA(CdS))) brushes, in which US nanoparticles were chemically bonded by the carboxylic groups of PMAA segment. Alternating treatment of the PS-b-(PMMA-co-PMAA(CdS)) brushes by selective solvents for the outer block (a mixed solvent of acetone and ethanol) and the inner PS block (toluene) induced perpendicular phase separation of polymer brushes, which resulted in the reversible lifting and lowering of US nanoparticles in the perpendicular direction. The extent of movement can be adjusted by the relative thickness of two blocks of the polymer brushes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polylactide (PLA) was melt blended with a biodegradable hyperbranched poly(ester amide) (HBP) to enhance its flexibility and toughness without sacrificing comprehensive performance. The advantage of using HBP was due to its unique spherical shape, low melt viscosity, and abundant functional end groups together with its easy access. Rheological measurement showed that blending PLA with as little as 2.5% HBP resulted in a 40% reduction of melt viscosity. The glass transition temperature (T-g) of PLA in the blends decreased slightly with the increase of HBP content, indicating partial miscibility which resulted from intermolecular interactions via H-bonding. The H-bonding involving CO of PLA with OH and NH of HBP was evidenced by FTIR analysis for the first time. The HBP component, as a heterogeneous nucleating agent, accelerated the crystallization rate of PLA. Remarkably, with the increase of HBP content, the elongation at break of PLA blends dramatically increased without severe loss in tensile strength, even the tensile strength increased within 10% content of HBP. The stress-strain curves and the SEM photos of impact-fractured surface showed the material changed from brittle to ductile failure with the addition of HBP. Reasonable interfacial adhesion via H-bonding and finely dispersed particulate structure of HBP in PLA were proposed to be responsible for the improved mechanical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, five Pt3Sn1/C catalysts have been prepared using three different methods. It was found that phosphorus deposited on the surface of carbon with Pt and Sn when sodium hypophosphite was used as reducing agent by optimization of synthetic conditions such as pH in the synthetic solution and temperature. The deposition of phosphorus should be effective on the size reduction and markedly reduces PtSn nanoparticle size, and raise electrochemical active surface (EAS) area of catalyst and improve the catalytic performance. TEM images show PtSnP nanoparticles are highly dispersed on the carbon surface with average diameters of 2 nm. The optimum composition is Pt3Sn1P2/C (note PtSn/C-3) catalyst in my work. With this composition, it shows very high activity for the electrooxidation of ethanol and exhibit enhanced performance compared with other two Pt3Sn1/C catalysts that prepared using ethylene glycol reduction method (note PtSn/C-EG) and borohydride reduction method (note PtSn/-B). The maximum power densities of direct ethanol fuel cell (DEFC) were 61 mW cm(-2) that is 150 and 170% higher than that of the PtSn/C-EG and PtSn/C-B catalyst.