846 resultados para generalized linear-models
Resumo:
The Perk-Schultz model may be expressed in terms of the solution of the Yang-Baxter equation associated with the fundamental representation of the untwisted affine extension of the general linear quantum superalgebra U-q (gl(m/n)], with a multiparametric coproduct action as given by Reshetikhin. Here, we present analogous explicit expressions for solutions of the Yang-Baxter equation associated with the fundamental representations of the twisted and untwisted affine extensions of the orthosymplectic quantum superalgebras U-q[osp(m/n)]. In this manner, we obtain generalizations of the Perk-Schultz model.
Resumo:
In this paper, the problems of three carrier phase ambiguity resolution (TCAR) and position estimation (PE) are generalized as real time GNSS data processing problems for a continuously observing network on large scale. In order to describe these problems, a general linear equation system is presented to uniform various geometry-free, geometry-based and geometry-constrained TCAR models, along with state transition questions between observation times. With this general formulation, generalized TCAR solutions are given to cover different real time GNSS data processing scenarios, and various simplified integer solutions, such as geometry-free rounding and geometry-based LAMBDA solutions with single and multiple-epoch measurements. In fact, various ambiguity resolution (AR) solutions differ in the floating ambiguity estimation and integer ambiguity search processes, but their theoretical equivalence remains under the same observational systems models and statistical assumptions. TCAR performance benefits as outlined from the data analyses in some recent literatures are reviewed, showing profound implications for the future GNSS development from both technology and application perspectives.
Resumo:
Continuum diffusion models are often used to represent the collective motion of cell populations. Most previous studies have simply used linear diffusion to represent collective cell spreading, while others found that degenerate nonlinear diffusion provides a better match to experimental cell density profiles. In the cell modeling literature there is no guidance available with regard to which approach is more appropriate for representing the spreading of cell populations. Furthermore, there is no knowledge of particular experimental measurements that can be made to distinguish between situations where these two models are appropriate. Here we provide a link between individual-based and continuum models using a multi-scale approach in which we analyze the collective motion of a population of interacting agents in a generalized lattice-based exclusion process. For round agents that occupy a single lattice site, we find that the relevant continuum description of the system is a linear diffusion equation, whereas for elongated rod-shaped agents that occupy L adjacent lattice sites we find that the relevant continuum description is connected to the porous media equation (pme). The exponent in the nonlinear diffusivity function is related to the aspect ratio of the agents. Our work provides a physical connection between modeling collective cell spreading and the use of either the linear diffusion equation or the pme to represent cell density profiles. Results suggest that when using continuum models to represent cell population spreading, we should take care to account for variations in the cell aspect ratio because different aspect ratios lead to different continuum models.
Resumo:
Hybrid system representations have been applied to many challenging modeling situations. In these hybrid system representations, a mixture of continuous and discrete states is used to capture the dominating behavioural features of a nonlinear, possible uncertain, model under approximation. Unfortunately, the problem of how to best design a suitable hybrid system model has not yet been fully addressed. This paper proposes a new joint state measurement relative entropy rate based approach for this design purpose. Design examples and simulation studies are presented which highlight the benefits of our proposed design approaches.
Resumo:
PySSM is a Python package that has been developed for the analysis of time series using linear Gaussian state space models (SSM). PySSM is easy to use; models can be set up quickly and efficiently and a variety of different settings are available to the user. It also takes advantage of scientific libraries Numpy and Scipy and other high level features of the Python language. PySSM is also used as a platform for interfacing between optimised and parallelised Fortran routines. These Fortran routines heavily utilise Basic Linear Algebra (BLAS) and Linear Algebra Package (LAPACK) functions for maximum performance. PySSM contains classes for filtering, classical smoothing as well as simulation smoothing.
Resumo:
Earthwork planning has been considered in this article and a generic block partitioning and modelling approach has been devised to provide strategic plans of various levels of detail. Conceptually this approach is more accurate and comprehensive than others, for instance those that are section based. In response to environmental concerns the metric for decision making was fuel consumption and emissions. Haulage distance and gradient are also included as they are important components of these metrics. Advantageously the fuel consumption metric is generic and captures the physical difficulties of travelling over inclines of different gradients, that is consistent across all hauling vehicles. For validation, the proposed models and techniques have been applied to a real world road project. The numerical investigations have demonstrated that the models can be solved with relatively little CPU time. The proposed block models also result in solutions of superior quality, i.e. they have reduced fuel consumption and cost. Furthermore the plans differ considerably from those based solely upon a distance based metric thus demonstrating a need for industry to reflect upon their current practices.
Resumo:
In the finite element modelling of steel frames, external loads usually act along the members rather than at the nodes only. Conventionally, when a member is subjected to these transverse loads, they are converted to nodal forces which act at the ends of the elements into which the member is discretised by either lumping or consistent nodal load approaches. For a contemporary geometrically non-linear analysis in which the axial force in the member is large, accurate solutions are achieved by discretising the member into many elements, which can produce unfavourable consequences on the efficacy of the method for analysing large steel frames. Herein, a numerical technique to include the transverse loading in the non-linear stiffness formulation for a single element is proposed, and which is able to predict the structural responses of steel frames involving the effects of first-order member loads as well as the second-order coupling effect between the transverse load and the axial force in the member. This allows for a minimal discretisation of a frame for second-order analysis. For those conventional analyses which do include transverse member loading, prescribed stiffness matrices must be used for the plethora of specific loading patterns encountered. This paper shows, however, that the principle of superposition can be applied to the equilibrium condition, so that the form of the stiffness matrix remains unchanged with only the magnitude of the loading being needed to be changed in the stiffness formulation. This novelty allows for a very useful generalised stiffness formulation for a single higher-order element with arbitrary transverse loading patterns to be formulated. The results are verified using analytical stability function studies, as well as with numerical results reported by independent researchers on several simple structural frames.
Resumo:
Protein molecular motors are natural nano-machines that convert the chemical energy from the hydrolysis of adenosine triphosphate into mechanical work. These efficient machines are central to many biological processes, including cellular motion, muscle contraction and cell division. The remarkable energetic efficiency of the protein molecular motors coupled with their nano-scale has prompted an increasing number of studies focusing on their integration in hybrid micro- and nanodevices, in particular using linear molecular motors. The translation of these tentative devices into technologically and economically feasible ones requires an engineering, design-orientated approach based on a structured formalism, preferably mathematical. This contribution reviews the present state of the art in the modelling of protein linear molecular motors, as relevant to the future design-orientated development of hybrid dynamic nanodevices. © 2009 The Royal Society of Chemistry.
Resumo:
A global framework for linear stability analyses of traffic models, based on the dispersion relation root locus method, is presented and is applied taking the example of a broad class of car-following (CF) models. This approach is able to analyse all aspects of the dynamics: long waves and short wave behaviours, phase velocities and stability features. The methodology is applied to investigate the potential benefits of connected vehicles, i.e. V2V communication enabling a vehicle to send and receive information to and from surrounding vehicles. We choose to focus on the design of the coefficients of cooperation which weights the information from downstream vehicles. The coefficients tuning is performed and different ways of implementing an efficient cooperative strategy are discussed. Hence, this paper brings design methods in order to obtain robust stability of traffic models, with application on cooperative CF models
Resumo:
Stability analyses have been widely used to better understand the mechanism of traffic jam formation. In this paper, we consider the impact of cooperative systems (a.k.a. connected vehicles) on traffic dynamics and, more precisely, on flow stability. Cooperative systems are emerging technologies enabling communication between vehicles and/or with the infrastructure. In a distributed communication framework, equipped vehicles are able to send and receive information to/from other equipped vehicles. Here, the effects of cooperative traffic are modeled through a general bilateral multianticipative car-following law that improves cooperative drivers' perception of their surrounding traffic conditions within a given communication range. Linear stability analyses are performed for a broad class of car-following models. They point out different stability conditions in both multianticipative and nonmultianticipative situations. To better understand what happens in unstable conditions, information on the shock wave structure is studied in the weakly nonlinear regime by the mean of the reductive perturbation method. The shock wave equation is obtained for generic car-following models by deriving the Korteweg de Vries equations. We then derive traffic-state-dependent conditions for the sign of the solitary wave (soliton) amplitude. This analytical result is verified through simulations. Simulation results confirm the validity of the speed estimate. The variation of the soliton amplitude as a function of the communication range is provided. The performed linear and weakly nonlinear analyses help justify the potential benefits of vehicle-integrated communication systems and provide new insights supporting the future implementation of cooperative systems.
Resumo:
The problem of identifying parameters of time invariant linear dynamical systems with fractional derivative damping models, based on a spatially incomplete set of measured frequency response functions and experimentally determined eigensolutions, is considered. Methods based on inverse sensitivity analysis of damped eigensolutions and frequency response functions are developed. It is shown that the eigensensitivity method requires the development of derivatives of solutions of an asymmetric generalized eigenvalue problem. Both the first and second order inverse sensitivity analyses are considered. The study demonstrates the successful performance of the identification algorithms developed based on synthetic data on one, two and a 33 degrees of freedom vibrating systems with fractional dampers. Limited studies have also been conducted by combining finite element modeling with experimental data on accelerances measured in laboratory conditions on a system consisting of two steel beams rigidly joined together by a rubber hose. The method based on sensitivity of frequency response functions is shown to be more efficient than the eigensensitivity based method in identifying system parameters, especially for large scale systems.
Resumo:
We solve the Dynamic Ehrenfeucht-Fra\"iss\'e Game on linear orders for both players, yielding a normal form for quantifier-rank equivalence classes of linear orders in first-order logic, infinitary logic, and generalized-infinitary logics with linearly ordered clocks. We show that Scott Sentences can be manipulated quickly, classified into local information, and consistency can be decided effectively in the length of the Scott Sentence. We describe a finite set of linked automata moving continuously on a linear order. Running them on ordinals, we compute the ordinal truth predicate and compute truth in the constructible universe of set-theory. Among the corollaries are a study of semi-models as efficient database of both model-theoretic and formulaic information, and a new proof of the atomicity of the Boolean algebra of sentences consistent with the theory of linear order -- i.e., that the finitely axiomatized theories of linear order are dense.
Resumo:
AbstractObjectives Decision support tools (DSTs) for invasive species management have had limited success in producing convincing results and meeting users' expectations. The problems could be linked to the functional form of model which represents the dynamic relationship between the invasive species and crop yield loss in the DSTs. The objectives of this study were: a) to compile and review the models tested on field experiments and applied to DSTs; and b) to do an empirical evaluation of some popular models and alternatives. Design and methods This study surveyed the literature and documented strengths and weaknesses of the functional forms of yield loss models. Some widely used models (linear, relative yield and hyperbolic models) and two potentially useful models (the double-scaled and density-scaled models) were evaluated for a wide range of weed densities, maximum potential yield loss and maximum yield loss per weed. Results Popular functional forms include hyperbolic, sigmoid, linear, quadratic and inverse models. Many basic models were modified to account for the effect of important factors (weather, tillage and growth stage of crop at weed emergence) influencing weed–crop interaction and to improve prediction accuracy. This limited their applicability for use in DSTs as they became less generalized in nature and often were applicable to a much narrower range of conditions than would be encountered in the use of DSTs. These factors' effects could be better accounted by using other techniques. Among the model empirically assessed, the linear model is a very simple model which appears to work well at sparse weed densities, but it produces unrealistic behaviour at high densities. The relative-yield model exhibits expected behaviour at high densities and high levels of maximum yield loss per weed but probably underestimates yield loss at low to intermediate densities. The hyperbolic model demonstrated reasonable behaviour at lower weed densities, but produced biologically unreasonable behaviour at low rates of loss per weed and high yield loss at the maximum weed density. The density-scaled model is not sensitive to the yield loss at maximum weed density in terms of the number of weeds that will produce a certain proportion of that maximum yield loss. The double-scaled model appeared to produce more robust estimates of the impact of weeds under a wide range of conditions. Conclusions Previously tested functional forms exhibit problems for use in DSTs for crop yield loss modelling. Of the models evaluated, the double-scaled model exhibits desirable qualitative behaviour under most circumstances.
Resumo:
A non-linear model, construed as a generalized version of the models put forth earlier for the study of bi-state social interaction processes, is proposed in this study. The feasibility of deriving the dynamics of such processes is demonstrated by establishing equivalence between the non-linear model and a higher order linear model.
Resumo:
This thesis studies quantile residuals and uses different methodologies to develop test statistics that are applicable in evaluating linear and nonlinear time series models based on continuous distributions. Models based on mixtures of distributions are of special interest because it turns out that for those models traditional residuals, often referred to as Pearson's residuals, are not appropriate. As such models have become more and more popular in practice, especially with financial time series data there is a need for reliable diagnostic tools that can be used to evaluate them. The aim of the thesis is to show how such diagnostic tools can be obtained and used in model evaluation. The quantile residuals considered here are defined in such a way that, when the model is correctly specified and its parameters are consistently estimated, they are approximately independent with standard normal distribution. All the tests derived in the thesis are pure significance type tests and are theoretically sound in that they properly take the uncertainty caused by parameter estimation into account. -- In Chapter 2 a general framework based on the likelihood function and smooth functions of univariate quantile residuals is derived that can be used to obtain misspecification tests for various purposes. Three easy-to-use tests aimed at detecting non-normality, autocorrelation, and conditional heteroscedasticity in quantile residuals are formulated. It also turns out that these tests can be interpreted as Lagrange Multiplier or score tests so that they are asymptotically optimal against local alternatives. Chapter 3 extends the concept of quantile residuals to multivariate models. The framework of Chapter 2 is generalized and tests aimed at detecting non-normality, serial correlation, and conditional heteroscedasticity in multivariate quantile residuals are derived based on it. Score test interpretations are obtained for the serial correlation and conditional heteroscedasticity tests and in a rather restricted special case for the normality test. In Chapter 4 the tests are constructed using the empirical distribution function of quantile residuals. So-called Khmaladze s martingale transformation is applied in order to eliminate the uncertainty caused by parameter estimation. Various test statistics are considered so that critical bounds for histogram type plots as well as Quantile-Quantile and Probability-Probability type plots of quantile residuals are obtained. Chapters 2, 3, and 4 contain simulations and empirical examples which illustrate the finite sample size and power properties of the derived tests and also how the tests and related graphical tools based on residuals are applied in practice.