955 resultados para fractured bedrock aquifers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kurzfassung Zielsetzung der vorliegenden Arbeit war eine hydrogeologische Untersuchung zur Herkunftsbestimmung der Grundwässer im Raum Alzey/Rheinhessen. Ein erster Anlaß zu weiteren Untersuchungen war durch erhöhte Schwermetallgehalte in den Rohwässern gegeben. Im Alzeyer Raum können Kluftgrundwasserleiter (Rotliegendes und z.T. verkarstetes Kalktertiär) sowie Porengrundwasserleiter (Tertiäre Meeressande und Ablagerungen des Quartärs) unterschieden werden. Aufgrund der Lösungsinhalte ergibt sich eine Typisierung in erdalkalische Hydrogenkarbonatwässer bzw. Austauschwässer, bei denen Erdalkalien durch Alkalien ersetzt wurden. Mit verschiedenen Grundwassermodellierungen konnten mögliche 'Grundwasserneubildungs-Pfade' aufgezeigt werden. Die 1996 durchgeführte Herabsetzung des Arsengrenzwertes zwang viele Versorgungsunternehmen weitere Verfahrenstechniken zur Grundwasseraufbereitung anzuwenden. Es zeigten sich erhebliche Schwierigkeiten bei der Umsetzung der EU-Wasserrahmenrichtlinie bezogen auf das lokale Untersuchungsgebiet Alzey. Schwermetallmobilisationen im Untergrund können aufgrund anthropogen eingetragener Nitrate im sonst reduzierenden Milieu ermöglicht werden. Mittels Tritium- und FCKW-Analysen konnten Alter bzw. Verweilzeiten der Wässer bestimmt werden. Zusammen mit den Werten von Deuterium und Sauerstoff-18, Schwefel-34 und Sauerstoff-18 aus dem im Wasser gelösten Sulfat und Stickstoff-15 und Sauerstoff-18 aus dem im Wasser gelösten Nitrat, konnten Aussagen über Änderungen im Aquifermilieu getroffen werden. Es zeigte sich, daß selbst bei einem völligen Stop des Düngemitteleintrages, die Schwermetallmobilisationen in Grundwässern im Bereich Rheinhessisches Hügelland innerhalb der nächsten 30 Jahre nicht abnehmen werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrothermal fluids are a fundamental resource for understanding and monitoring volcanic and non-volcanic systems. This thesis is focused on the study of hydrothermal system through numerical modeling with the geothermal simulator TOUGH2. Several simulations are presented, and geophysical and geochemical observables, arising from fluids circulation, are analyzed in detail throughout the thesis. In a volcanic setting, fluids feeding fumaroles and hot spring may play a key role in the hazard evaluation. The evolution of the fluids circulation is caused by a strong interaction between magmatic and hydrothermal systems. A simultaneous analysis of different geophysical and geochemical observables is a sound approach for interpreting monitored data and to infer a consistent conceptual model. Analyzed observables are ground displacement, gravity changes, electrical conductivity, amount, composition and temperature of the emitted gases at surface, and extent of degassing area. Results highlight the different temporal response of the considered observables, as well as the different radial pattern of variation. However, magnitude, temporal response and radial pattern of these signals depend not only on the evolution of fluid circulation, but a main role is played by the considered rock properties. Numerical simulations highlight differences that arise from the assumption of different permeabilities, for both homogeneous and heterogeneous systems. Rock properties affect hydrothermal fluid circulation, controlling both the range of variation and the temporal evolution of the observable signals. Low temperature fumaroles and low discharge rate may be affected by atmospheric conditions. Detailed parametric simulations were performed, aimed to understand the effects of system properties, such as permeability and gas reservoir overpressure, on diffuse degassing when air temperature and barometric pressure changes are applied to the ground surface. Hydrothermal circulation, however, is not only a characteristic of volcanic system. Hot fluids may be involved in several mankind problems, such as studies on geothermal engineering, nuclear waste propagation in porous medium, and Geological Carbon Sequestration (GCS). The current concept for large-scale GCS is the direct injection of supercritical carbon dioxide into deep geological formations which typically contain brine. Upward displacement of such brine from deep reservoirs driven by pressure increases resulting from carbon dioxide injection may occur through abandoned wells, permeable faults or permeable channels. Brine intrusion into aquifers may degrade groundwater resources. Numerical results show that pressure rise drives dense water up to the conduits, and does not necessarily result in continuous flow. Rather, overpressure leads to new hydrostatic equilibrium if fluids are initially density stratified. If warm and salty fluid does not cool passing through the conduit, an oscillatory solution is then possible. Parameter studies delineate steady-state (static) and oscillatory solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work concerns with the study of debris flows and, in particular, with the related hazard in the Alpine Environment. During the last years several methodologies have been developed to evaluate hazard associated to such a complex phenomenon, whose velocity, impacting force and inappropriate temporal prediction are responsible of the related high hazard level. This research focuses its attention on the depositional phase of debris flows through the application of a numerical model (DFlowz), and on hazard evaluation related to watersheds morphometric, morphological and geological characterization. The main aims are to test the validity of DFlowz simulations and assess sources of errors in order to understand how the empirical uncertainties influence the predictions; on the other side the research concerns with the possibility of performing hazard analysis starting from the identification of susceptible debris flow catchments and definition of their activity level. 25 well documented debris flow events have been back analyzed with the model DFlowz (Berti and Simoni, 2007): derived form the implementation of the empirical relations between event volume and planimetric and cross section inundated areas, the code allows to delineate areas affected by an event by taking into account information about volume, preferential flow path and digital elevation model (DEM) of fan area. The analysis uses an objective methodology for evaluating the accuracy of the prediction and involve the calibration of the model based on factors describing the uncertainty associated to the semi empirical relationships. The general assumptions on which the model is based have been verified although the predictive capabilities are influenced by the uncertainties of the empirical scaling relationships, which have to be necessarily taken into account and depend mostly on errors concerning deposited volume estimation. In addition, in order to test prediction capabilities of physical-based models, some events have been simulated through the use of RAMMS (RApid Mass MovementS). The model, which has been developed by the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) in Birmensdorf and the Swiss Federal Institute for Snow and Avalanche Research (SLF) takes into account a one-phase approach based on Voellmy rheology (Voellmy, 1955; Salm et al., 1990). The input file combines the total volume of the debris flow located in a release area with a mean depth. The model predicts the affected area, the maximum depth and the flow velocity in each cell of the input DTM. Relatively to hazard analysis related to watersheds characterization, the database collected by the Alto Adige Province represents an opportunity to examine debris-flow sediment dynamics at the regional scale and analyze lithologic controls. With the aim of advancing current understandings about debris flow, this study focuses on 82 events in order to characterize the topographic conditions associated with their initiation , transportation and deposition, seasonal patterns of occurrence and examine the role played by bedrock geology on sediment transfer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The carbonate outcrops of the anticline of Monte Conero (Italy) were studied in order to characterize the geometry of the fractures and to establish their influence on the petrophysical properties (hydraulic conductivity) and on the vulnerability to pollution. The outcrops form an analog for a fractured aquifer and belong to the Maiolica Fm. and the Scaglia Rossa Fm. The geometrical properties of fractures such as orientation, length, spacing and aperture were collected and statistically analyzed. Five types of mechanical fractures were observed: veins, joints, stylolites, breccias and faults. The types of fractures are arranged in different sets and geometric assemblages which form fracture networks. In addition, the fractures were analyzed at the microscale using thin sections. The fracture age-relationships resulted similar to those observed at the outcrop scale, indicating that at least three geological episodes have occurred in Monte Conero. A conceptual model for fault development was based on the observations of veins and stylolites. The fracture sets were modelled by the code FracSim3D to generate fracture network models. The permeability of a breccia zone was estimated at microscale by and point counting and binary image methods, whereas at the outcrop scale with Oda’s method. Microstructure analysis revealed that only faults and breccias are potential pathways for fluid flow since all veins observed are filled with calcite. According this, three scenarios were designed to asses the vulnerability to pollution of the analogue aquifer: the first scenario considers the Monte Conero without fractures, second scenario with all observed systematic fractures and the third scenario with open veins, joints and faults/breccias. The fractures influence the carbonate aquifer by increasing its porosity and hydraulic conductivity. The vulnerability to pollution depends also on the presence of karst zones, detric zones and the material of the vadose zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Während der Glazialphasen kam es in den europäischen Mittelgebirgen bedingt durch extensive solifluidale Massenbewegungen zur Bildung von Deckschichten. Diese Deckschichten repräsentieren eine Mischung verschiedener Substrate, wie anstehendes Ausgangsgestein, äolische Depositionen und lokale Erzgänge. Die räumliche Ausdehnung der Metallkontaminationen verursacht durch kleinräumige Erzgänge wird durch die periglaziale Solifluktion verstärkt. Das Ziel der vorliegenden Untersuchung war a) den Zusammenhang zwischen den Reliefeigenschaften und den Ausprägungen der solifluidalen Deckschichten und Böden aufzuklären, sowie b) mittels Spurenelementgehalte und Blei-Isotopen-Verhältnisse als Eingangsdaten für Mischungsmodelle die Beitrage der einzelnen Substrate zum Ausgangsmaterial der Bodenbildung zu identifizieren und quantifizieren und c) die räumliche Verteilung von Blei (Pb) in Deckschichten, die über Bleierzgänge gewandert sind, untersucht, die Transportweite des erzbürtigen Bleis berechnet und die kontrollierenden Faktoren der Transportweite bestimmt werden. Sechs Transekte im südöstlichen Rheinischen Schiefergebirge, einschließlich der durch periglaziale Solifluktion entwickelten Böden, wurden untersucht. Die bodenkundliche Geländeaufnahme erfolgte nach AG Boden (2005). O, A, B und C-Horizontproben wurden auf ihre Spurenelementgehalte und teilweise auf ihre 206Pb/207Pb-Isotopenverhältnisse analysiert. Die steuernden Faktoren der Verteilung und Eigenschaften periglazialer Deckschichten sind neben der Petrographie, Reliefeigenschaften wie Exposition, Hangneigung, Hangposition und Krümmung. Die Reliefanalyse zeigt geringmächtige Deckschichten in divergenten, konvexen Hangbereichen bei gleichzeitig hohem Skelettgehalt. In konvergent, konkaven Hangbereichen nimmt die Deckschichtenmächtigkeit deutlich zu, bei gleichzeitig zunehmendem Lösslehm- und abnehmendem Skelettgehalt. Abhängig von den Reliefeigenschaften und -positionen reichen die ausgeprägten Bodentypen von sauren Braunerden bis hin zu Pseudogley-Parabraunerden. Des Weiteren kommen holozäne Kolluvien in eher untypischen Reliefpositionen wie langgestreckten, kaum geneigten Hangbereichen oder Mittelhangbereichen vor. Außer für Pb bewegen sich die Spurenelementgehalte im Rahmen niedriger Hintergrundgehalte. Die Pb-Gehalte liegen zwischen 20-135 mg kg-1. Abnehmende Spurenelementgehalte und Isotopensignaturen (206Pb/207Pb-Isotopenverhältnisse) von Pb zeigen, dass nahezu kein Pb aus atmosphärischen Depositionen in die B-Horizonte verlagert wurde. Eine Hauptkomponentenanalyse (PCA) der Spurenelementgehalte hat vier Hauptsubstratquellen der untersuchten B-Horizonte identifiziert (Tonschiefer, Löss, Laacher-See-Tephra [LST] und lokale Pb-Erzgänge). Mittels 3-Komponenten-Mischungsmodell, das Tonschiefer, Löss und LST einschloss, konnten, bis auf 10 Ausreißer, die Spurenelementgehalte aller 120 B-Horizontproben erklärt werden. Der Massenbeitrag des Pb-Erzes zur Substratmischung liegt bei <0,1%. Die räumliche Pb-Verteilung zeigt Bereiche lokaler Pb-Gehaltsmaxima hangaufwärtiger Pb-Erzgänge. Mittels eines 206Pb/207Pb-Isotopenverhältnis-Mischungsmodells konnten 14 Bereiche erhöhter lokaler Pb-Gehaltsmaxima ausgewiesen werden, die 76-100% erzbürtigen Bleis enthalten. Mit Hilfe eines Geographischen Informationssystems wurden die Transportweiten des erzbürtigen Bleis mit 30 bis 110 m bestimmt. Die steuerenden Faktoren der Transportweite sind dabei die Schluffkonzentration und die Vertikalkrümmung. Diese Untersuchung zeigt, dass Reliefeigenschaften und Reliefposition einen entscheidenden Einfluss auf die Ausprägung der Deckschichten und Böden im europäischen Mittelgebirgsbereich haben. Mischungsmodelle in Kombination mit Spurenelementanalysen und Isotopenverhältnissen stellen ein wichtiges Werkzeug zur Bestimmung der Beiträge der einzelnen Glieder in Bodensubstratmischungen dar. Außerdem können lokale Bleierzgänge die natürlichen Pb-Gehalte in Böden, entwickelt in periglazialen Deckschichten der letzten Vereisungsphase (Würm), bis über 100 m Entfernung erhöhen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Copper and Zn are essential micronutrients for plants, animals, and humans; however, they may also be pollutants if they occur at high concentrations in soil. Therefore, knowledge of Cu and Zn cycling in soils is required both for guaranteeing proper nutrition and to control possible risks arising from pollution.rnThe overall objective of my study was to test if Cu and Zn stable isotope ratios can be used to investigate into the biogeochemistry, source and transport of these metals in soils. The use of stable isotope ratios might be especially suitable to trace long-term processes occurring during soil genesis and transport of pollutants through the soil. In detail, I aimed to answer the questions, whether (1) Cu stable isotopes are fractionated during complexation with humic acid, (2) 65Cu values can be a tracer for soil genetic processes in redoximorphic soils (3) 65Cu values can help to understand soil genetic processes under oxic weathering conditions, and (4) 65Cu and 66Zn values can act as tracers of sources and transport of Cu and Zn in polluted soils.rnTo answer these questions, I ran adsorption experiments at different pH values in the laboratory and modelled Cu adsorption to humic acid. Furthermore, eight soils were sampled representing different redox and weathering regimes of which two were influenced by stagnic water, two by groundwater, two by oxic weathering (Cambisols), and two by podzolation. In all horizons of these soils, I determined selected basic soil properties, partitioned Cu into seven operationally defined fractions and determined Cu concentrations and Cu isotope ratios (65Cu values). Finally, three additional soils were sampled along a deposition gradient at different distances to a Cu smelter in Slovakia and analyzed together with bedrock and waste material from the smelter for selected basic soil properties, Cu and Zn concentrations and 65Cu and 66Zn values.rnMy results demonstrated that (1) Copper was fractionated during adsorption on humic acid resulting in an isotope fractionation between the immobilized humic acid and the solution (65CuIHA-solution) of 0.26 ± 0.11‰ (2SD) and that the extent of fractionation was independent of pH and involved functional groups of the humic acid. (2) Soil genesis and plant cycling causes measurable Cu isotope fractionation in hydromorphic soils. The results suggested that an increasing number of redox cycles depleted 63Cu with increasing depth resulting in heavier 65Cu values. (3) Organic horizons usually had isotopically lighter Cu than mineral soils presumably because of the preferred uptake and recycling of 63Cu by plants. (4) In a strongly developed Podzol, eluviation zones had lighter and illuviation zones heavier 65Cu values because of the higher stability of organo-65Cu complexes compared to organo-63Cu complexes. In the Cambisols and a little developed Podzol, oxic weathering caused increasingly lighter 65Cu values with increasing depth, resulting in the opposite depth trend as in redoximorphic soils, because of the preferential vertical transport of 63Cu. (5) The 66Zn values were fractionated during the smelting process and isotopically light Zn was emitted allowing source identification of Zn pollution while 65Cu values were unaffected by the smelting and Cu emissions isotopically indistinguishable from soil. The 65Cu values in polluted soils became lighter down to a depth of 0.4 m indicating isotope fractionation during transport and a transport depth of 0.4 m in 60 years. 66Zn values had an opposite depth trend becoming heavier with depth because of fractionation by plant cycling, speciation changes, and mixing of native and smelter-derived Zn. rnCopper showed measurable isotope fractionation of approximately 1‰ in unpolluted soils, allowing to draw conclusions on plant cycling, transport, and redox processes occurring during soil genesis and 65Cu and 66Zn values in contaminated soils allow for conclusions on sources (in my study only possible for Zn), biogeochemical behavior, and depth of dislocation of Cu and Zn pollution in soil. I conclude that stable Cu and Zn isotope ratios are a suitable novel tool to trace long-term processes in soils which are difficult to assess otherwise.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several countries have acquired, over the past decades, large amounts of area covering Airborne Electromagnetic data. Contribution of airborne geophysics has dramatically increased for both groundwater resource mapping and management proving how those systems are appropriate for large-scale and efficient groundwater surveying. We start with processing and inversion of two AEM dataset from two different systems collected over the Spiritwood Valley Aquifer area, Manitoba, Canada respectively, the AeroTEM III (commissioned by the Geological Survey of Canada in 2010) and the “Full waveform VTEM” dataset, collected and tested over the same survey area, during the fall 2011. We demonstrate that in the presence of multiple datasets, either AEM and ground data, due processing, inversion, post-processing, data integration and data calibration is the proper approach capable of providing reliable and consistent resistivity models. Our approach can be of interest to many end users, ranging from Geological Surveys, Universities to Private Companies, which are often proprietary of large geophysical databases to be interpreted for geological and\or hydrogeological purposes. In this study we deeply investigate the role of integration of several complimentary types of geophysical data collected over the same survey area. We show that data integration can improve inversions, reduce ambiguity and deliver high resolution results. We further attempt to use the final, most reliable output resistivity models as a solid basis for building a knowledge-driven 3D geological voxel-based model. A voxel approach allows a quantitative understanding of the hydrogeological setting of the area, and it can be further used to estimate the aquifers volumes (i.e. potential amount of groundwater resources) as well as hydrogeological flow model prediction. In addition, we investigated the impact of an AEM dataset towards hydrogeological mapping and 3D hydrogeological modeling, comparing it to having only a ground based TEM dataset and\or to having only boreholes data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geochemical mapping is a valuable tool for the control of territory that can be used not only in the identification of mineral resources and geological, agricultural and forestry studies but also in the monitoring of natural resources by giving solutions to environmental and economic problems. Stream sediments are widely used in the sampling campaigns carried out by the world's governments and research groups for their characteristics of broad representativeness of rocks and soils, for ease of sampling and for the possibility to conduct very detailed sampling In this context, the environmental role of stream sediments provides a good basis for the implementation of environmental management measures, in fact the composition of river sediments is an important factor in understanding the complex dynamics that develop within catchment basins therefore they represent a critical environmental compartment: they can persistently incorporate pollutants after a process of contamination and release into the biosphere if the environmental conditions change. It is essential to determine whether the concentrations of certain elements, in particular heavy metals, can be the result of natural erosion of rocks containing high concentrations of specific elements or are generated as residues of human activities related to a certain study area. This PhD thesis aims to extract from an extensive database on stream sediments of the Romagna rivers the widest spectrum of informations. The study involved low and high order stream in the mountain and hilly area, but also the sediments of the floodplain area, where intensive agriculture is active. The geochemical signals recorded by the stream sediments will be interpreted in order to reconstruct the natural variability related to bedrock and soil contribution, the effects of the river dynamics, the anomalous sites, and with the calculation of background values be able to evaluate their level of degradation and predict the environmental risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlorinated solvents are the most ubiquitous organic contaminants found in groundwater since the last five decades. They generally reach groundwater as Dense Non-Aqueous Phase Liquid (DNAPL). This phase can migrate through aquifers, and also through aquitards, in ways that aqueous contaminants cannot. The complex phase partitioning to which chlorinated solvent DNAPLs can undergo (i.e. to the dissolved, vapor or sorbed phase), as well as their transformations (e.g. degradation), depend on the physico-chemical properties of the contaminants themselves and on features of the hydrogeological system. The main goal of the thesis is to provide new knowledge for the future investigations of sites contaminated by DNAPLs in alluvial settings, proposing innovative investigative approaches and emphasizing some of the key issues and main criticalities of this kind of contaminants in such a setting. To achieve this goal, the hydrogeologic setting below the city of Ferrara (Po plain, northern Italy), which is affected by scattered contamination by chlorinated solvents, has been investigated at different scales (regional and site specific), both from an intrinsic (i.e. groundwater flow systems) and specific (i.e. chlorinated solvent DNAPL behavior) point of view. Detailed investigations were carried out in particular in one selected test-site, known as “Caretti site”, where high-resolution vertical profiling of different kind of data were collected by means of multilevel monitoring systems and other innovative sampling and analytical techniques. This allowed to achieve a deep geological and hydrogeological knowledge of the system and to reconstruct in detail the architecture of contaminants in relationship to the features of the hosting porous medium. The results achieved in this thesis are useful not only at local scale, e.g. employable to interpret the origin of contamination in other sites of the Ferrara area, but also at global scale, in order to address future remediation and protection actions of similar hydrogeologic settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il lavoro di questa tesi ha previsto l'acquisizione e l'elaborazione di dati geofisici al fine di determinare la risposta sismica di tre siti della Rete Accelerometrica Nazionale (RAN), collocandosi all'interno del progetto sismologico S2-2014 Constraining Observations into Seismic Hazard gestito dal Dipartimento di Protezione Civile Nazionale e dall’Istituto Nazionale di Geofisica e di Vulcanologia. Tale necessità nasce dal fatto che il più delle volte le informazioni per la corretta caratterizzazione geofisica dei siti ospitanti le stazioni accelerometriche risultano essere insufficienti, rendendo così i dati acquisiti non idonei per l'utilizzo in sede di calcolo delle leggi di attenuazione dalle quali successivamente vengono derivate le mappe di pericolosità sismica a livello nazionale e locale. L'obbiettivo di questo lavoro di tesi è stato quello di determinare l'eventuale presenza di effetti di sito o effetti di interazione suolo-struttura, per tre stazioni ubicate in Friuli-Venezia Giulia (codici stazioni MAI, TLM1 e BRC), capaci di amplificare il moto del terreno nella parte di suolo compresa fra il bedrock sismico (inteso come strato che non amplifica) e il piano campagna. Le principali tecniche utilizzate sono le seguenti: HVSR ossia rapporto spettrale della componente orizzontale su quella verticale da misure di rumore ambientale acquisite e EHV ovvero rapporto spettrale della componente orizzontale su verticale da registrazione di terremoti scaricate dal database accelerometrico italiano ITACA. I risultati delle due tecniche sono stati poi confrontati al fine di verificare un'eventuale congruenza, portando alle seguenti conclusioni. La caratterizzazione della stazione TLM1 ha portato alla importante conclusione che il sito non è idoneo per l’acquisizione di dati accelerometrici da utilizzare per il calcolo di leggi predittive o di attenuazione. La stazione accelerometrica è ospitata all’interno di un box in lamiera su una collina nel comune di Verzegnis (UD). Il problema principale che riguarda questo sito è la vicinanza della diga Ambiesta e del relativo invaso. La stazione di BRC è collocata all’interno di una cabina di trasformazione dell’ENEL sul lato destro del torrente Cellina, al suo ingresso nel lago di Barcis (PN). Le condizioni topografiche della zona, molto impervie, non consentono la corretta acquisizione dei dati. Un ulteriore fattore di disturbo è dato dall’interazione suolo-struttura, causata dalla cabina ENEL in cui è alloggiata la strumentazione. La caratterizzazione della stazione MAI collocata all'interno di una cabina ENEL nel centro del comune di Majano (UD) ha portato alla conclusione che questa è l'unica delle tre stazioni considerate capace di acquisire dati utilizzabili per il processo di validazione per le stime di pericolosità sismica. Questo perché le condizioni topografiche dell’area, pianura con stratificazione 1D, hanno permesso di sfruttare a pieno le potenzialità delle metodologie utilizzate, consentendo anche la ricostruzione di profili di velocità delle onde di taglio S con i quali è stata assegnata la categoria C del suolo previsto dall'approccio semplificato presente nelle NTC08.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zusammenfassung Der ca. 1.555 m lange Tunnel Fernthal wurde von 1998 bis 2000 im Zuge der Bundesbahn-Neubaustrecke Köln – Rhein/Main erstellt. Der Tunnel durchquert devonische Schichten des Rechtsrheinischen Schiefergebirges. Die Ton- und Sandsteine sind tiefgründig verwittert, intensiv verfaltet mit wechselnden Vergenzen der Faltenschenkel und zudem stark durch Trennflächen zerlegt. Beim Auffahren des Tunnel Fernthal sind Phänomene in Bezug auf die Wechselwirkung zwischen dem Grundwasser und dem Tunnel sowie dem Fels und dem Tunnel beobachtet worden, die vom Verfasser der vorliegenden Arbeit im Nachgang der Baumaßnahme vertieft ausgewertet und interpretiert werden.Innerhalb von zwanzig strukturgeologischen Homogenbereichen wurden die geotechnisch und strukturgeologisch bestimmenden Einflussfaktoren (z.B. ungünstig zum Hohlraum einfallende Schichtung oder Querklüftung mit hohem Durchtrennungsgrad) im Hinblick auf Ihre Auswirkung auf die Sicherung der Ortsbrust und damit die Vortriebsgeschwindigkeit quantifiziert. Über das Produkt der den Vortrieb bestimmenden Einzelfaktoren wurde für den jeweiligen Homogenbereich ein Gesamteinflussfaktor errechnet.Aus dem neu eingeführten Gesamteinflussfaktors fn gesamt lassen sich dabei Empfehlungen über die notwendigen Sicherungsmaßnahmen im Bereich der Ortsbrust ableiten und Einteilungen in Ausbruchsklassen vornehmen. Über die Bewertungsmatrix und den sich daraus ergebenen Gesamteinflussfaktor können reduzierte Vortriebsgeschwindigkeiten ausgehend von einer 'idealen' Vortriebsgeschwindigkeit näherungsweise errechnet werden. Mithilfe der Bewertungsmatrix lässt sich die bautechnischen Eigenschaften des Gebirges besser bewerten. So zeigt sich im Rahmen dieser Arbeit deutlich, dass es bei einem vergenten Faltengebirge günstiger ist, den Tunnel gegen die Vergenz von Faltenschenkeln aufzufahren. Somit können schon im Vorfeld einer Tunnelbaumaßnahme verschiedene Vortriebsschemata durchrechnet werden. Neben der besseren Prognose von notwendigen Sicherungsmaßnahmen kann durch den Zeitgewinn auch ein finanzieller Vorteil für die Beteiligten entstehen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Groundwater represents the most important raw material. Germany struggles to maintain the best water quality possible by providing advanced monitoring systems and legal measures to prevent further pollution. In areas involved in the intensive growing of plantations, one of the major contamination factors derives from nitrate. The aim of this master thesis is the characterisation of the Water Protection Area of Bremen (Germany). Denitrification is a natural process, representing the best means of natural reduction of the hazardous nitrate ion, which is dangerous both for human health and for the development of eutrophication. The study has been possible thanks to the collaboration with the University of Bremen, the Geological Service of Bremen (GDfB) and Peter Spiedt (Water Supply Company of Bremen). It will be defined whether nitrate amounts in the groundwater still overcome the threshold legally imposed, and state if the denitrification process takes place, thanks to new samples collected in 2015 and their integration with historical data. Gas samples have been gathered to test them with the “N2/Ar method”, which is able to estimate the denitrification rate quantitatively. Analyses stated the effective occurrence of the reaction, nevertheless showing that it only affects the chemical of the deep aquifers and not shallow ones. Temporal trends concentrations of nitrate have shown that no real improvement took place in the past years. It will be commented that despite the denitrification being responsible for an efficacious lowering in the nitrate ion, it needs reactive materials to take place. Since the latter are finite elements, it is not an endless process. It is thus believed that is clearly necessary to adopt a better attitude in order to maintain the best chemical qualities possible in such an important area, providing drinking water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goals of any treatment of cervical spine injuries are: return to maximum functional ability, minimum of residual pain, decrease of any neurological deficit, minimum of residual deformity and prevention of further disability. The advantages of surgical treatment are the ability to reach optimal reduction, immediate stability, direct decompression of the cord and the exiting roots, the need for only minimum external fixation, the possibility for early mobilisation and clearly decreased nursing problems. There are some reasons why those goals can be reached better by anterior surgery. Usually the bony compression of the cord and roots comes from the front therefore anterior decompression is usually the procedure of choice. Also, the anterior stabilisation with a plate is usually simpler than a posterior instrumentation. It needs to be stressed that closed reduction by traction can align the fractured spine and indirectly decompress the neural structures in about 70%. The necessary weight is 2.5 kg per level of injury. In the upper cervical spine, the odontoid fracture type 2 is an indication for anterior surgery by direct screw fixation. Joint C1/C2 dislocations or fractures or certain odontoid fractures can be treated with a fusion of the C1/C2 joint by anterior transarticular screw fixation. In the lower and middle cervical spine, anterior plating combined with iliac crest or fibular strut graft is the procedure of choice, however, a solid graft can also be replaced by filled solid or expandable vertebral cages. The complication of this surgery is low, when properly executed and anterior surgery may only be contra-indicated in case of a significant lesion or locked joints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the present retrospective study was to evaluate the post-traumatic healing of the pulp and periodontium of 32 permanent teeth with horizontal root fractures. Twenty-nine patients, 8-48 years old, who presented at our department with a root fracture between January 2001 and April 2007, participated in the study. Root-fractured teeth with a loosened or dislocated coronal fragment were repositioned and splinted for 14-49 days (average: 34 days). In cases of severe dislocation of the coronal fragment, prophylactic endodontic treatment was performed. Follow-up examinations were conducted routinely after 1,2,3,6, and 12 months. For this study, follow-up took place for up to 7 years post trauma. Of 32 root-fractured teeth, 29 (91%) survived. 10 teeth (31%) exhibited pulpal healing; 13 teeth (41%) were prophylactically endodontically treated within 2 weeks of injury. At the fracture line, interposition of calcified tissue was evident in 6 teeth (19%), and interposition of granulation tissue was observed in 8 teeth (25%). The prognosis of the root-fractured teeth was good, and one-third of the teeth with root fractures possessed a vital pulp at the final examination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertebroplasty and kyphoplasty are well-established minimally invasive treatment options for compression fractures of osteoporotic vertebral bodies. Possible procedural disadvantages, however, include incomplete fracture reduction or a significant loss of reduction after balloon tamp deflation, prior to cement injection. A new procedure called "vertebral body stenting" (VBS) was tested in vitro and compared to kyphoplasty. VBS uses a specially designed catheter-mounted stent which can be implanted and expanded inside the vertebral body. As much as 24 fresh frozen human cadaveric vertebral bodies (T11-L5) were utilized. After creating typical compression fractures, the vertebral bodies were reduced by kyphoplasty (n = 12) or by VBS (n = 12) and then stabilized with PMMA bone cement. Each step of the procedure was performed under fluoroscopic control and analysed quantitatively. Finally, static and dynamic biomechanical tests were performed. A complete initial reduction of the fractured vertebral body height was achieved by both systems. There was a significant loss of reduction after balloon deflation in kyphoplasty compared to VBS, and a significant total height gain by VBS (mean +/- SD in %, p < 0.05, demonstrated by: anterior height loss after deflation in relation to preoperative height [kyphoplasty: 11.7 +/- 6.2; VBS: 3.7 +/- 3.8], and total anterior height gain [kyphoplasty: 8.0 +/- 9.4; VBS: 13.3 +/- 7.6]). Biomechanical tests showed no significant stiffness and failure load differences between systems. VBS is an innovative technique which allows for the possibly complete reduction of vertebral compression fractures and helps maintain the restored height by means of a stent. The height loss after balloon deflation is significantly decreased by using VBS compared to kyphoplasty, thus offering a new promising option for vertebral augmentation.