912 resultados para energy-protein supplementation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Goose grazing on arctic tundra vegetation has shown both positive and negative effects on subsequent foraging conditions. To understand the potential of a density-dependent feedback on herbivore population size, the relation between grazing pressure and future foraging conditions is essential. We studied the effect of increasing grazing pressure of barnacle geese (Branta leucopsis) on Spitsbergen. During the establishment of a breeding colony in the period 1992-2004, the proportion of graminoids decreased in the diet of wild geese, while the percentage of mosses increased. Grazing trials with captive geese in an unexploited area showed a similar shift in diet composition. High-quality food plants were depleted within years and over years. Intake rate declined too and as consequence, metabolisable energy intake rate (MEIR) decreased rapidly with increasing grazing pressure. During three successive years of experimental grazing, MEIR decreased at all levels of grazing pressure and declined below minimal energetic requirements when grazing exceeded natural levels of grazing pressure. This suggests that foraging conditions rapidly decline with increasing grazing pressure in these low-productive habitats. The potential for density-dependent feedbacks on local population increase is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in gene expression are associated with switching to an autoprotected phenotype in response to environmental and physiological stress. Ubiquitous molecular chaperones from the heat shock protein (HSP) superfamily confer neuronal protection that can be blocked by antibodies. Recent research has focused on the interactions between the molecular sensors that affect the increased expression of neuroprotective HSPs above constitutive levels. An examination of the conditions under which the expression of heat shock protein 70 (Hsp70) was up regulated in a hypoxia and anoxia tolerant tropical species, the epaulette shark (Hemiscyllium ocellatum), revealed that up-regulation was dependent on exceeding a stimulus threshold for an oxidative stressor. While hypoxic-preconditioning confers neuroprotective changes, there was no increase in the level of Hsp70 indicating that its increased expression was not associated with achieving a neuroprotected state in response to hypoxia in the epaulette shark. Conversely, there was a significant increase in Hsp70 in response to anoxic-preconditioning, highlighting the presence of a stimulus threshold barrier and raising the possibility that, in this species, Hsp70 contributes to the neuroprotective response to extreme crises, such as oxidative stress. Interestingly, there was a synergistic effect of coincident stressors on Hsp70 expression, which was revealed when metabolic stress was superimposed upon oxidative stress. Brain energy charge was significantly lower when adenosine receptor blockade, provided by treatment with aminophylline, was present prior to the final anoxic episode, under these circumstances, the level of Hsp70 induced was significantly higher than in the pair-matched saline treated controls. An understanding of the molecular and metabolic basis for neuroprotective switches, which result in an up-regulation of neuroprotective Hsp70 expression in the brain, is needed so that intervention strategies can be devised to manage CNS pathologies and minimise damage caused by ischemia and trauma. In addition, the current findings indicate that measurements of HSP expression per se may provide a useful correlate of the level of neuroprotection achieved in the switch to an autoprotected phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Tuberculosis is an important cause of wasting. The functional consequences of wasting and recovery may depend on the distribution of lost and gained nutrient stores between protein and fat masses. Objective: The goal was to study nutrient partitioning, ie, the proportion of weight change attributable to changes in fat mass (FM) versus protein mass (PM), during anti mycobacterial treatment. Design: Body-composition measures were made of 21 men and 9 women with pulmonary tuberculosis at baseline and after 1 and 6 mo of treatment. All subjects underwent dual-energy X-ray absorptiometry and deuterium bromide dilution tests, and a four-compartment model of FM, total body water (TBW), bone minerals (BM), and PM was derived. The ratio of PM to FM at any time was expressed as the energy content (p-ratio). Changes in the p-ratio were related to disease severity as measured by radiologic criteria. Results: Patients gained 10% in body weight (P < 0.001) from baseline to month 6. This was mainly due to a 44% gain in FM (P < 0.001); PM, BM, and TBW did not change significantly. Results were similar in men and women. The p-ratio decreased from baseline to month 1 and then fell further by month 6. Radiologic disease severity was not correlated with changes in the p-ratio. Conclusions: Microbiological cure of tuberculosis does not restore PM within 6 mo, despite a strong anabolic response. Change in the p-ratio is a suitable parameter for use in studying the effect of disease on body composition because it allows transformation of such effects into a normal distribution across a wide range of baseline proportion between fat and protein mass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lines of transgenic tobacco have been generated that are transformed with either the wild-type peanut peroxidase prxPNC2 cDNA, driven by the CaMV3 5S promoter (designated 35S::prxPNC2-WT) or a mutated PNC2 cDNA in which the asparagine residue (Asn(189)) associated with the point of glycan attachment (Asn(189)) has been replaced with alanine (designated 35S::prxPNC2-M). PCR, using genomic DNA as template, has confirmed the integration of the 35S::prxPNC2-WT and 35::prxPNC2-M constructs into the tobacco genome, and western analysis using anti-PNC2 antibodies has revealed that the prxPNC2-WT protein product (PNC2-WT) accumulates with a molecular mass of 34,670 Da, while the prxPNC2-M protein product (PNC2-M) accumulates with a molecular mass of 32,600 Da. Activity assays have shown that both PNC2-WT and PNC2-M proteins accumulate preferentially in the ionically-bound cell wall fraction, with a significantly higher relative accumulation of the PNC2-WT isoenzyme in the ionically-bound fraction when compared with the PNC2-M isoform. Kinetic analysis of the partially purified PNC2-WT isozyme revealed an affinity constant (apparent K-m) of 11.2 mM for the reductor substrate guaiacol and 1.29 mM for H2O2, while values of 11.9 mM and 1.12 mM were determined for the PNC2-M isozyme. A higher Arrenhius activation energy (E,,) was determined for the PNC2-M isozyme (22.9 kJ mol(-1)), when compared with the PNC2-WT isozyme (17.6 kJ mol(-1)), and enzyme assays have determined that the absence of the glycan influences the thermostability of the PNC2-M isozyme. These results are discussed with respect to the proposed roles of N-linked glycans attached to plant peroxidases. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The polypeptide backbones and side chains of proteins are constantly moving due to thermal motion and the kinetic energy of the atoms. The B-factors of protein crystal structures reflect the fluctuation of atoms about their average positions and provide important information about protein dynamics. Computational approaches to predict thermal motion are useful for analyzing the dynamic properties of proteins with unknown structures. In this article, we utilize a novel support vector regression (SVR) approach to predict the B-factor distribution (B-factor profile) of a protein from its sequence. We explore schemes for encoding sequences and various settings for the parameters used in SVR. Based on a large dataset of high-resolution proteins, our method predicts the B-factor distribution with a Pearson correlation coefficient (CC) of 0.53. In addition, our method predicts the B-factor profile with a CC of at least 0.56 for more than half of the proteins. Our method also performs well for classifying residues (rigid vs. flexible). For almost all predicted B-factor thresholds, prediction accuracies (percent of correctly predicted residues) are greater than 70%. These results exceed the best results of other sequence-based prediction methods. (C) 2005 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The apparent ileal digestibility coefficients of amino acids in 107 samples representing 22 food ingredients were determined using 6-week-old broiler chickens. The ingredients assayed included five cereals ( barley, maize, sorghum, triticale and wheat), two cereal by-products ( rice polishings and wheat middlings), four oilseed meals ( canola, cottonseed, soyabean and sunflower meals), full-fat canola, maize gluten meal, four grain legumes ( chickpeas, faba beans,field peas and lupins) and five animal protein sources ( blood, feather,fish, meat and meat and bone meals). The mean ileal digestibility coefficients of amino acids in wheat and maize were higher than those in sorghum, triticale and barley. However, variations observed in individual amino acid digestibilities among samples within cereal type were greater than those determined between cereals. Threonine and lysine were the least digestible indispensable amino acids in the five cereals evaluated. The most digestible indispensable amino acid was phenylalanine in wheat and, leucine in maize and sorghum. In the case of the wheat middlings and rice polishings, threonine was the least digestible indispensable amino acid and arginine was the best digested. In the oilseed meals assayed, amino acid digestibility was highest for soya-bean and sunflower meals, intermediate for canola meal and lowest for cottonseed meal. Ileal digestibility coefficients of amino acids in lupins were found to be slightly lower than those in soya-bean meal. The amino acid digestibilities of field peas, faba beans and chickpeas were considerably lower than those of lupins. Digestibility of arginine was the highest and that of threonine was the lowest of the indispensable amino acids in oilseed meals and grain legumes, except in cottonseed meal. Lysine was the least digestible amino acid in cottonseed meal. In the animal protein sources assayed, digestibility coefficients of amino acids in blood meal were high, intermediate in fish meal, and low in meat meal, meat and bone meal and feather meal. Variation in amino acid digestibility coefficients determined for blood meal samples was small. However, wide variations in amino acid digestibilities were observed for other animal protein sources, highlighting significant batch-to-batch differences. In particular, marked variations were determined for meat meal and meat and bone meal samples. Cystine was the least digested amino acid in animal protein meals, with the exception of blood meal in which isoleucine had the lowest digestibility. The limitations of using apparent digestibility values in diet formulations and the concept of the standardized digestibility system to overcome these limitations are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to elucidate the oxidative folding mechanism of the macrocyclic cystine knot protein MCoTI-II. We aimed to investigate how the six-cysteine residues distributed on the circular backbone of the reduced unfolded peptide recognize their correct partner and join up to form a complex cystine-knotted topology. To answer this question, we studied the oxidative folding of the naturally occurring peptide using a range of spectroscopic methods. For both oxidative folding and reductive unfolding, the same disulfide intermediate species was prevalent and was characterized to be a native-like two-disulfide intermediate in which the Cys(1)-Cys(18) disulfide bond was absent. Overall, the folding pathway of this head-to-tail cyclized protein was found to be similar to that of linear cystine knot proteins from the squash family of trypsin inhibitors. However, the pathway differs in an important way from that of the cyclotide kalata B1, in that the equivalent two-disulfide intermediate in that case is not a direct precursor of the native protein. The size of the embedded ring within the cystine knot motif appears to play a crucial role in the folding pathway. Larger rings contribute to the independence of disulfides and favor an on-pathway native-like intermediate that has a smaller energy barrier to cross to form the native fold. The fact that macrocyclic proteins are readily able to fold to a complex knotted structure in vitro in the absence of chaperones makes them suitable as protein engineering scaffolds that have remarkable stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ‘leading coordinate’ approach to computing an approximate reaction pathway, with subsequent determination of the true minimum energy profile, is applied to a two-proton chain transfer model based on the chromophore and its surrounding moieties within the green fluorescent protein (GFP). Using an ab initio quantum chemical method, a number of different relaxed energy profiles are found for several plausible guesses at leading coordinates. The results obtained for different trial leading coordinates are rationalized through the calculation of a two-dimensional relaxed potential energy surface (PES) for the system. Analysis of the 2-D relaxed PES reveals that two of the trial pathways are entirely spurious, while two others contain useful information and can be used to furnish starting points for successful saddle-point searches. Implications for selection of trial leading coordinates in this class of proton chain transfer reactions are discussed, and a simple diagnostic function is proposed for revealing whether or not a relaxed pathway based on a trial leading coordinate is likely to furnish useful information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explore several models for the ground-state proton chain transfer pathway between the green fluorescent protein chromophore and its surrounding protein matrix, with a view to elucidating mechanistic aspects of this process. We have computed quantum chemically the minimum energy pathways (MEPs) in the ground electronic state for one-, two-, and three-proton models of the chain transfer. There are no stable intermediates for our models, indicating that the proton chain transfer is likely to be a single, concerted kinetic step. However, despite the concerted nature of the overall energy profile, a more detailed analysis of the MEPs reveals clear evidence of sequential movement of protons in the chain. The ground-state proton chain transfer does not appear to be driven by the movement of the phenolic proton off the chromophore onto the neutral water bridge. Rather, this proton is the last of the three protons in the chain to move. We find that the first proton movement is from the bridging Ser205 moiety to the accepting Glu222 group. This is followed by the second proton moving from the bridging water to the Ser205for our model this is where the barrier occurs. The phenolic proton on the chromophore is hence the last in the chain to move, transferring to a bridging “water” that already has substantial negative charge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemolithoautotrophic bacterium NT-26 (isolated from a gold mine in the Northern Territory of Australia) is unusual in that it acquires energy by oxidizing arsenite to arsenate while most other arsenic-oxidizing organisms perform this reaction as part of a detoxification mechanism against the potentially harmful arsenite [present as As(OH)(3) at neutral pH]. The enzyme that performs this reaction in NT-26 is the molybdoenzyme arsenite oxidase, and it has been previously isolated and characterized. Here we report the direct (unmediated) electrochemistry of NT-26 arsenite oxidase confined to the surface of a pyrolytic graphite working electrode. We have been able to demonstrate that the enzyme functions natively while adsorbed on the electrode where it displays stable and reproducible catalytic electrochemistry in the presence of arsenite. We report a pH dependence of the catalytic electrochemical potential of -33 mV/pH unit that is indicative of proton-coupled electron transfer. We also have performed catalytic voltammetry at a number of temperatures between 5 and 25 degrees C, and the catalytic current (proportional to the turnover number) follows simple Arrhenius behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The aim of this experiment was to investigate the influence of low dose bovine colostrum supplementation on exercise performance in cyclists over a 10 week period that included 5 days of high intensity training (HIT). Methods: Over 7 days of preliminary testing, 29 highly trained male road cyclists completed a VO2max test (in which their ventilatory threshold was estimated), a time to fatigue test at 110% of ventilatory threshold, and a 40 km time trial (TT40). Cyclists were then assigned to either a supplement (n = 14, 10 g/day bovine colostrum protein concentrate (CPC)) or a placebo group (n = 15, 10 g/day whey protein) and resumed their normal training. Following 5 weeks of supplementation, the cyclists returned to the laboratory to complete a second series of performance testing (week 7). They then underwent five consecutive days of HIT (week 8) followed by a further series of performance tests (week 9). Results: The influence of bovine CPC on TT40 performance during normal training was unclear (week 7: 1+/-3.1%, week 9: 0.1+/-2.1%; mean+/-90% confidence limits). However, at the end of the HIT period, bovine CPC supplementation, compared to the placebo, elicited a 1.9+/-2.2% improvement from baseline in TT40 performance and a 2.3+/-6.0% increase in time trial intensity (% VO2max), and maintained TT40 heart rate (2.5+/-3.7%). In addition, bovine CPC supplementation prevented a decrease in ventilatory threshold following the HIT period (4.6+/-4.6%). Conclusion: Low dose bovine CPC supplementation elicited improvements in TT40 performance during an HIT period and maintained ventilatory threshold following five consecutive days of HIT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliable values of total and digestible tryptophan in components of feed formulation matrices are needed because tryptophan is often the third limiting amino acid in practical poultry diets. However, tryptophan is oxidatively destroyed during acid hydrolysis in routine amino acid analysis and its determination requires a separate analytical procedure. The variability in contents and apparent ileal digestibility for 6-week-old broiler chickens of tryptophan in 74 samples representing 24 feedstuffs are presented in this paper. The average ileal tryptophan digestibility coefficient in wheat was 0.83, in sorghum and triticale 0.75, maize 0.71, soybean meal 0.84, sunflower meal 0.81, canola meal 0.78 and cottonseed meal 0.75. Among the grain legumes, tryptophan in lupins was better digested than that in chickpeas, fababeans and field peas. Among the animal protein meals, the tryptophan digestibility coefficients in fish meal (0.77) and blood meal (0.84) were substantially higher than those in meat meal (0.64), meat-and-bone meal (0.63) and feather meal (0.52). Marked variations in tryptophan digestibility were also observed among samples of fish meal, meat-and-bone meal and meat meal, highlighting significant batch-to-batch differences. For most feedstuffs, considerable variability was observed in the tryptophan concentrations, but such variations were not reflected in digestibility coefficients. (c) 2006 Society of Chemical Industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this research was to investigate the retention of flavour volatiles encapsulated in water-insoluble systems during high temperature–short time extrusion process. A protein precipitation method was used to produce water-insoluble capsules encapsulating limonene, and the capsules were added to the extruder feed material (cornstarch). A twin-screw extruder was used to evaluate the effect of capsule level of addition (0–5%), barrel temperature (125–145 °C) and screw speed (145–175 r.p.m.) on extruder parameters (torque, die pressure, specific mechanical energy, residence time distribution) and extrudate properties [flavour retention, texture, colour, density, expansion, water absorption index, water solubility index (WSI)]. Capsule level had a significant effect on extrusion conditions, flavour retention and extrudate physical properties. Flavour retention increased with the increase in capsule level from 0% to 2.5%, reached a maximum value at capsule level of 2.5% and decreased when the capsule level increased from 2.5% to 5%. The die pressure, torque, expansion ratio, hardness and WSI exhibited the opposite effect with the presence of capsules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interest in the relationship between inflammation and oxidative stress has increased dramatically in recent years, not only within the clinical setting but also in the fields of exercise biochemistry and immunology. Inflammation and oxidative stress share a common role in the etiology of a variety Of Chronic diseases. During exercise, inflammation and oxidative stress are linked via muscle metabolism and muscle damage. Because oxidative stress and inflammation have traditionally been associated with fatigue and impaired recovery from exercise, research has focused on nutritional strategies aimed at reducing these effects. In this review, we have evaluated the findings of studies involving antioxidant supplementation on alterations in markers of inflammation (e.g., cytokines, C-reactive protein and cortisol). This review focuses predominantly on the role of reactive oxygen and nitrogen species generated from muscle metabolism and muscle damage during exercise and on the modulatory effects of antioxidant supplements. Furthermore, we have analyzed the influence of factors such as the dose, timing, supplementation period and bioavailability of antioxidant nutrients. (C) 2007 Elsevier Inc. All rights reserved.