801 resultados para consultant selection, decision support system, requirement engineering
Resumo:
An increasing number of organizations have installed enterprise social media (ESM) platforms to allow employees to collaborate, work independently, and to innovate more easily. While research has started to explain how such technologies can lead to improved collaboration and productivity, their role in assisting employees in innovation processes remains unclear. In our research-in-progress we examine the case of a global retail organization that adopted ESM for all employees with the view to foster employee-driven innovation. We report on our on-going data collection and analysis, in which we focus on the salient mechanisms and contingency factors why ESM under some conditions facilitates employee-driven innovation and why under some conditions it does not. We report on on-going data collection, data analysis strategies and emergent findings, and conclude with a brief outlook on our future research strategies.
Resumo:
The use of expert knowledge to quantify a Bayesian Network (BN) is necessary when data is not available. This however raises questions regarding how opinions from multiple experts can be used in a BN. Linear pooling is a popular method for combining probability assessments from multiple experts. In particular, Prior Linear Pooling (PrLP), which pools opinions then places them into the BN is a common method. This paper firstly proposes an alternative pooling method, Posterior Linear Pooling (PoLP). This method constructs a BN for each expert, then pools the resulting probabilities at the nodes of interest. Secondly, it investigates the advantages and disadvantages of using these pooling methods to combine the opinions of multiple experts. Finally, the methods are applied to an existing BN, the Wayfinding Bayesian Network Model, to investigate the behaviour of different groups of people and how these different methods may be able to capture such differences. The paper focusses on 6 nodes Human Factors, Environmental Factors, Wayfinding, Communication, Visual Elements of Communication and Navigation Pathway, and three subgroups Gender (female, male),Travel Experience (experienced, inexperienced), and Travel Purpose (business, personal) and finds that different behaviors can indeed be captured by the different methods.
Resumo:
Environmental sensors collect massive amounts of audio data. This thesis investigates computational methods to support human analysts in identifying faunal vocalisations from that audio. A series of experiments was conducted to trial the effectiveness of novel user interfaces. This research examines the rapid scanning of spectrograms, decision support tools for users, and cleaning methods for folksonomies. Together, these investigations demonstrate that providing computational support to human analysts increases their efficiency and accuracy; this allows bioacoustics projects to efficiently utilise their valuable human analysts.
Resumo:
With the extensive use of rating systems in the web, and their significance in decision making process by users, the need for more accurate aggregation methods has emerged. The Naïve aggregation method, using the simple mean, is not adequate anymore in providing accurate reputation scores for items [6 ], hence, several researches where conducted in order to provide more accurate alternative aggregation methods. Most of the current reputation models do not consider the distribution of ratings across the different possible ratings values. In this paper, we propose a novel reputation model, which generates more accurate reputation scores for items by deploying the normal distribution over ratings. Experiments show promising results for our proposed model over state-of-the-art ones on sparse and dense datasets.
Resumo:
Organisations are constantly seeking new ways to improve operational efficiencies. This study investigates a novel way to identify potential efficiency gains in business operations by observing how they were carried out in the past and then exploring better ways of executing them by taking into account trade-offs between time, cost and resource utilisation. This paper demonstrates how these trade-offs can be incorporated in the assessment of alternative process execution scenarios by making use of a cost environment. A number of optimisation techniques are proposed to explore and assess alternative execution scenarios. The objective function is represented by a cost structure that captures different process dimensions. An experimental evaluation is conducted to analyse the performance and scalability of the optimisation techniques: integer linear programming (ILP), hill climbing, tabu search, and our earlier proposed hybrid genetic algorithm approach. The findings demonstrate that the hybrid genetic algorithm is scalable and performs better compared to other techniques. Moreover, we argue that the use of ILP is unrealistic in this setup and cannot handle complex cost functions such as the ones we propose. Finally, we show how cost-related insights can be gained from improved execution scenarios and how these can be utilised to put forward recommendations for reducing process-related cost and overhead within organisations.
Resumo:
With organisations facing significant challenges to remain competitive, Business Process Improvement (BPI) initiatives are often conducted to improve the efficiency and effectiveness of their business processes, focussing on time, cost, and quality improvements. Event logs which contain a detailed record of business operations over a certain time period, recorded by an organisation's information systems, are the first step towards initiating evidence-based BPI activities. Given an (original) event log as a starting point, an approach to explore better ways to execute a business process was developed, resulting in an improved (perturbed) event log. Identifying the differences between the original event log and the perturbed event log can provide valuable insights, helping organisations to improve their processes. However, there is a lack of automated techniques to detect the differences between two event logs. Therefore, this research aims to develop visualisation techniques to provide targeted analysis of resource reallocation and activity rescheduling. The differences between two event logs are first identified. The changes between the two event logs are conceptualised and realised with a number of visualisations. With the proposed visualisations, analysts will then be able to identify the changes related to resource and time, resulting in a more efficient business process. Ultimately, analysts can make use of this comparative information to initiate evidence-based BPI activities.
Resumo:
This paper addresses the problem of predicting the outcome of an ongoing case of a business process based on event logs. In this setting, the outcome of a case may refer for example to the achievement of a performance objective or the fulfillment of a compliance rule upon completion of the case. Given a log consisting of traces of completed cases, given a trace of an ongoing case, and given two or more possible out- comes (e.g., a positive and a negative outcome), the paper addresses the problem of determining the most likely outcome for the case in question. Previous approaches to this problem are largely based on simple symbolic sequence classification, meaning that they extract features from traces seen as sequences of event labels, and use these features to construct a classifier for runtime prediction. In doing so, these approaches ignore the data payload associated to each event. This paper approaches the problem from a different angle by treating traces as complex symbolic sequences, that is, sequences of events each carrying a data payload. In this context, the paper outlines different feature encodings of complex symbolic sequences and compares their predictive accuracy on real-life business process event logs.
Resumo:
All the materials used for our two experimental studies for evaluating the BPMVM modeller.
Resumo:
If the land sector is to make significant contributions to mitigating anthropogenic greenhouse gas (GHG) emissions in coming decades, it must do so while concurrently expanding production of food and fiber. In our view, mathematical modeling will be required to provide scientific guidance to meet this challenge. In order to be useful in GHG mitigation policy measures, models must simultaneously meet scientific, software engineering, and human capacity requirements. They can be used to understand GHG fluxes, to evaluate proposed GHG mitigation actions, and to predict and monitor the effects of specific actions; the latter applications require a change in mindset that has parallels with the shift from research modeling to decision support. We compare and contrast 6 agro-ecosystem models (FullCAM, DayCent, DNDC, APSIM, WNMM, and AgMod), chosen because they are used in Australian agriculture and forestry. Underlying structural similarities in the representations of carbon flows though plants and soils in these models are complemented by a diverse range of emphases and approaches to the subprocesses within the agro-ecosystem. None of these agro-ecosystem models handles all land sector GHG fluxes, and considerable model-based uncertainty exists for soil C fluxes and enteric methane emissions. The models also show diverse approaches to the initialisation of model simulations, software implementation, distribution, licensing, and software quality assurance; each of these will differentially affect their usefulness for policy-driven GHG mitigation prediction and monitoring. Specific requirements imposed on the use of models by Australian mitigation policy settings are discussed, and areas for further scientific development of agro-ecosystem models for use in GHG mitigation policy are proposed.
Resumo:
Public submission # 247 to the McKeon Review. The submission addresses the terms of reference on: How can we optimise translation of health and medical research into better health and wellbeing? (Terms of Reference 4, 8, 9, 10 and 11)
Resumo:
This article contributes an original integrated model of an open-pit coal mine for supporting energy-efficient decisions. Mixed integer linear programming is used to formulate a general integrated model of the operational energy consumption of four common open-pit coal mining subsystems: excavation and haulage, stockpiles, processing plants and belt conveyors. Mines are represented as connected instances of the four subsystems, in a flow sheet manner, which are then fitted to data provided by the mine operators. Solving the integrated model ensures the subsystems’ operations are synchronised and whole-of-mine energy efficiency is encouraged. An investigation on a case study of an open-pit coal mine is conducted to validate the proposed methodology. Opportunities are presented for using the model to aid energy-efficient decision-making at various levels of a mine, and future work to improve the approach is described.
Resumo:
The present study set out to test the hypothesis through field and simulation studies that the incorporation of short-term summer legumes, particularly annual legume lablab (Lablab purpureus cv. Highworth), in a fallow-wheat cropping system will improve the overall economic and environmental benefits in south-west Queensland. Replicated, large plot experiments were established at five commercial properties by using their machineries, and two smaller plot experiments were established at two intensively researched sites (Roma and St George). A detailed study on various other biennial and perennial summer forage legumes in rotation with wheat and influenced by phosphorus (P) supply (10 and 40 kg P/ha) was also carried out at the two research sites. The other legumes were lucerne (Medicago sativa), butterfly pea (Clitoria ternatea) and burgundy bean (Macroptilium bracteatum). After legumes, spring wheat (Triticum aestivum) was sown into the legume stubble. The annual lablab produced the highest forage yield, whereas germination, establishment and production of other biennial and perennial legumes were poor, particularly in the red soil at St George. At the commercial sites, only lablab-wheat rotations were experimented, with an increased supply of P in subsurface soil (20 kg P/ha). The lablab grown at the commercial sites yielded between 3 and 6 t/ha forage yield over 2-3 month periods, whereas the following wheat crop with no applied fertiliser yielded between 0.5 to 2.5 t/ha. The wheat following lablab yielded 30% less, on average, than the wheat in a fallow plot, and the profitability of wheat following lablab was slightly higher than that of the wheat following fallow because of greater costs associated with fallow management. The profitability of the lablab-wheat phase was determined after accounting for the input costs and additional costs associated with the management of fallow and in-crop herbicide applications for a fallow-wheat system. The economic and environmental benefits of forage lablab and wheat cropping were also assessed through simulations over a long-term climatic pattern by using economic (PreCAPS) and biophysical (Agricultural Production Systems Simulation, APSIM) decision support models. Analysis of the long-term rainfall pattern (70% in summer and 30% in winter) and simulation studies indicated that ~50% time a wheat crop would not be planted or would fail to produce a profitable crop (grain yield less than 1 t/ha) because of less and unreliable rainfall in winter. Whereas forage lablab in summer would produce a profitable crop, with a forage yield of more than 3 t/ha, ~90% times. Only 14 wheat crops (of 26 growing seasons, i.e. 54%) were profitable, compared with 22 forage lablab (of 25 seasons, i.e. 90%). An opportunistic double-cropping of lablab in summer and wheat in winter is also viable and profitable in 50% of the years. Simulation studies also indicated that an opportunistic lablab-wheat cropping can reduce the potential runoff+drainage by more than 40% in the Roma region, leading to improved economic and environmental benefits.
Resumo:
In the design of a windmill using a sail type rotor, there arose a need to protect the structure against damage due to overloading in excessive winds. This need was satisfied by using a novel form of load limiter in the support system of sails of the windmill. This note will analyze the load capacity wires so that one can design wires for any specified limit load.
Resumo:
The forest simulator is a computerized model for predicting forest growth and future development as well as effects of forest harvests and treatments. The forest planning system is a decision support tool, usually including a forest simulator and an optimisation model, for finding the optimal forest management actions. The information produced by forest simulators and forest planning systems is used for various analytical purposes and in support of decision making. However, the quality and reliability of this information can often be questioned. Natural variation in forest growth and estimation errors in forest inventory, among other things, cause uncertainty in predictions of forest growth and development. This uncertainty stemming from different sources has various undesirable effects. In many cases outcomes of decisions based on uncertain information are something else than desired. The objective of this thesis was to study various sources of uncertainty and their effects in forest simulators and forest planning systems. The study focused on three notable sources of uncertainty: errors in forest growth predictions, errors in forest inventory data, and stochastic fluctuation of timber assortment prices. Effects of uncertainty were studied using two types of forest growth models, individual tree-level models and stand-level models, and with various error simulation methods. New method for simulating more realistic forest inventory errors was introduced and tested. Also, three notable sources of uncertainty were combined and their joint effects on stand-level net present value estimates were simulated. According to the results, the various sources of uncertainty can have distinct effects in different forest growth simulators. The new forest inventory error simulation method proved to produce more realistic errors. The analysis on the joint effects of various sources of uncertainty provided interesting knowledge about uncertainty in forest simulators.
Resumo:
Department of Forest Resource Management in the University of Helsinki has in years 2004?2007 carried out so-called SIMO -project to develop a new generation planning system for forest management. Project parties are organisations doing most of Finnish forest planning in government, industry and private owned forests. Aim of this study was to find out the needs and requirements for new forest planning system and to clarify how parties see targets and processes in today's forest planning. Representatives responsible for forest planning in each organisation were interviewed one by one. According to study the stand-based system for managing and treating forests continues in the future. Because of variable data acquisition methods with different accuracy and sources, and development of single tree interpretation, more and more forest data is collected without field work. The benefits of using more specific forest data also calls for use of information units smaller than tree stand. In Finland the traditional way to arrange forest planning computation is divided in two elements. After updating the forest data to present situation every stand unit's growth is simulated with different alternative treatment schedule. After simulation, optimisation selects for every stand one treatment schedule so that the management program satisfies the owner's goals in the best possible way. This arrangement will be maintained in the future system. The parties' requirements to add multi-criteria problem solving, group decision support methods as well as heuristic and spatial optimisation into system make the programming work more challenging. Generally the new system is expected to be adjustable and transparent. Strict documentation and free source code helps to bring these expectations into effect. Variable growing models and treatment schedules with different source information, accuracy, methods and the speed of processing are supposed to work easily in system. Also possibilities to calibrate models regionally and to set local parameters changing in time are required. In future the forest planning system will be integrated in comprehensive data management systems together with geographic, economic and work supervision information. This requires a modular method of implementing the system and the use of a simple data transmission interface between modules and together with other systems. No major differences in parties' view of the systems requirements were noticed in this study. Rather the interviews completed the full picture from slightly different angles. In organisation the forest management is considered quite inflexible and it only draws the strategic lines. It does not yet have a role in operative activity, although the need and benefits of team level forest planning are admitted. Demands and opportunities of variable forest data, new planning goals and development of information technology are known. Party organisations want to keep on track with development. One example is the engagement in extensive SIMO-project which connects the whole field of forest planning in Finland.