979 resultados para composite index


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to improve the wear resistance of the gamma-TiAl intermetallic alloy, microstructure, room- and high-temperature (600 degrees C) wear behaviors of laser clad gamma/Cr7C3/TiC composite coatings with different constitution of NiCr-Cr3C2 precursor-mixed powders have been investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrometer (EDS), block-on-ring (room-temperature) and pin-on-disk (high-temperature) wear tests. The responding wear mechanisms are discussed in detail. Results show that microstructures of the laser clad composite coatings have non-equilibrium solidified microstructures consisting of primary hard Cr7C3 and TiC carbides and the inter-primary gamma/Cr7C3 eutectic matrix, about three to five times higher average microhardness compared with the TiAl alloy substrate. Higher wear resistance than the original TiAl alloy is achieved in the clad composite coatings under dry sliding wear conditions, which is closely related to the formation of non-equilibrium solidified reinforced Cr7C3 and TiC carbides and the positive contribution of the relatively ductile and tough gamma/Cr7C3 eutectics matrix and their stability under high-temperature exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A material model for whisker-reinforced metal-matrix composites is constructed that consists of three kinds of essential elements: elastic medium, equivalent slip system, and fiber-bundle. The heterogeneity of material constituents in position is averaged, while the orientation distribution of whiskers and slip systems is considered in the structure of the material model. Crystal and interface sliding criteria are addressed. Based on the stress-strain response of the model material, an elasto-plastic constitutive relation is derived to discuss the initial and deformation induced anisotropy as well as other fundamental features. Predictions of the present theory for unidirectional-fiber-reinforced aluminum matrix composites are favorably compared with FEM results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plastic electronics is a rapidly expanding topic, much of which has been focused on organic semiconductors. However, it is also of interest to find viable ways to integrate nanomaterials, such as silicon nanowires (SiNWs) and carbon nanotubes (CNTs), into this technology. Here, we present methods of fabrication of composite devices incorporating such nanostructured materials into an organic matrix. We investigate the formation of polymer/CNT composites, for which we use the semiconducting polymer poly(3,3‴-dialkyl-quaterthiophene) (PQT). We also report a method of fabricating polymer/SiNW TFTs, whereby sparse arrays of parallel oriented SiNWs are initially prepared on silicon dioxide substrates from forests of as-grown gold-catalysed SiNWs. Subsequent ink-jet printing of PQT on these arrays produces a polymer/SiNW composite film. We also present the electrical characterization of all composite devices. © 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The refractive index and thickness of SiO2 thin films naturally grown on Si substrates were determined simultaneously within the wavelength range of 220-1100 nm with variable-angle spectroscopic ellipsometry. Different angles of incidence and wavelength ranges were chosen to enhance the analysis sensitivity for more accurate results. Several optical models describing the practical SiO2-Si system were investigated, and best results were obtained with the optical model, including an interface layer between SiO2 and Si, which proved the existence of the interface layer in this work as described in other publications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anisotropic nature of fibre reinforced composites leads to large stress concentrations around pin-loaded holes through standard weave cloths. Proper understanding of how this anisotropic nature affects the load distribution around holes can be utilised to reduce these con-centrations if sufficient thought is given to the internal fibre geometry near to the hole. Such local reinforcements need not be highly complex and can be readily produced without excessive effort, producing significant improvements in performance. © 1996 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple composite design methodology has been developed from the basic principles of composite component failure. This design approach applies the principles of stress field matching to develop suitable reinforcement patterns around three-dimensional details such as lugs in mechanical components. The resulting patterns are essentially curvilinear orthogonal meshes, adjusted to meet the restrictions imposed by geometric restraints and the intended manufacturing process. Whilst the principles behind the design methodology can be applied to components produced by differing manufacturing processes, the results found from looking at simple generic example problems suggest a realistic and practical generic manufacturing approach. The underlying principles of the design methodology are described and simple analyses are used to help illustrate both the methodology and how such components behave. These analyses suggest it is possible to replace high-strength steel lugs with composite components whose strength-to-weight ratio is some 4-5 times better. © 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the current state of the polymer-carbon nanotube composites field. The article first covers key points in dispersion and stabilization of nanotubes in a polymer matrix, with particular attention paid to ultrasonic cavitation and shear mixing. We then focus on the emerging trends in nanocomposite actuators, in particular, photo-stimulated mechanical response. The magnitude and even the direction of this actuation critically depend on the degree of tube alignment in the matrix; in this context, we discuss the affine model predicting the upper bound of orientational order of nanotubes, induced by an imposed strain. We review how photo-actuation in nanocomposites depend on nanotube concentration, alignment and entanglement, and examine possible mechanisms that could lead to this effect. Finally, we discuss properties of pure carbon nanotube networks, in form of mats or fibers. These systems have no polymer matrix, yet demonstrate pronounced viscoelasticity and also the same photomechanical actuation as seen in polymer-based composites. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic compression tests were performed by means of a Split Hopkinson Pressure Bar (SHPB). Test materials were 2124Al alloys reinforced with 17% volume fraction of 3, 13 and 37 μm SiC particles, respectively. Under strain rate ε = 2100 l/s, SiC particles have a strong effect on σ0.2 of the composites and the σ0.2 increases with different SiC particle size in the following order: 2124Al-alloy → 124Al/SiCp (37 μm) → 2124Al/SiCp (13 μm) → 2124Al/SiCp (3 μm), and the strain hardening of the composites depends mainly on the strain hardening of matrix, 2124A1 alloy. The results of dimensional analysis present that the flow stress of these composites not only depends on the property of reinforcement and matrix but also relates to the microstructure scale, matrix grain size, reinforcement size, the distance between reinforcements and dislocations in matrix. The normalized flow stress here is a function of inverse power of the edge-edge particle spacing, dislocation density and matrix grain size. Close-up observation shows that, in the composite containing SiC particles (3 μm), localized deformation formed readily comparing with other materials under the same loading condition. Microscopic observations indicate that different plastic flow patterns occur within the matrix due to the presence of hard particles with different sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An in situ method was developed to produce an Ni alloy composite coating reinforced by in situ reacted TiC particles with a gradient distribution, using one-step laser cladding with a pre-placed powder mixture on a 5CrMnMo steel substrate. Dispersed and ultra-fine TIC particles were formed in situ in the coating. Most. of the TiC particles, with a marked gradient distribution, were uniformly distributed within interdendritic regions because of the trapping effect of the advancing solid-liquid interface. In addition, the TiC-gamma-Ni interfaces generated in situ were found to be free from any deleterious surface reaction. Finally, the microhardness also showed a gradient variation, with the highest value of 1250 Hv0.2 and the wear properties of the coating were significantly enhanced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of the thermal residual stress on the deformation behavior of a composite has been analyzed with a new micromechanical method. The method is based on secant moduli approximation and a new homogenized effective stress to characterize the plastic state of the matrix. It is found that the generated thermal residual stresses after cooling and their influence on the subsequent deformation behavior depends significantly on the aspect ratio of the inclusions. With prolate inclusions, the presence of thermal residual stresses generate a higher compressive hardening curves of the composite, but it is reversed with oblate inclusions. For particle reinforced composite, thermal residual stresses induce a tensile hardening curve higher than the compressive one and this is in agreement with experimental observations. (C) 1998 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The NiAl intermetallic layers and NiAl matrix composite layers with TiC particulate reinforcement were successfully synthesized by laser cladding with coaxial powder feeding of Ni/Al clad powder and Ni/Al + TiC powder mixture, respectively. With optimized processing parameters and powder mixture compositions, the synthesized layers were free of cracks and metallurgical bond with the substrate. The microstructure of the laser-synthesized layers was composed of 6-NiAl phase and a few gamma phases for NiAl intermetallic; unmelted TiC, dispersive fine precipitated TiC particles and refined beta-NiAl phase matrix for TiC reinforced NiAl intermetallic composite. The average microhardness was 355 HV0.1 and 538 HV0.1, respectively. Laser synthesizing and direct metal depositing offer promising approaches for producing NiAl intermetallic and TiC-reinforced NiAl metal matrix composite coatings and for fabricating NiAl intermetallic bulk structure. (C) 2004 Laser Institute of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zr48.5Cu46.5Al5 bulk metallic glass (BMG) composites with diameters of 3 and,4 mm were prepared through suction casting in an arc melting furnace by modulating the alloy composition around the monothetic BMG composition of the high glass forming ability. Microstructural characterization reveals that the composites contain micron-sized CuZr phase with martensite structure, as well as nano-sized Zr2Cu crystalline particles and Cu10Zr7 plate-like phase embedded in an amorphous matrix. Room temperature compression tests showed that the composites exhibited significant strain hardening and obvious plastic strain of 7.7% for 3 nun and 6.4% for 4 nun diameter samples, respectively.