Deformation behavior and microstructure effect in 2124Al/SiCp composite


Autoria(s): Ling Z(凌中)
Data(s)

2000

Resumo

<span style="color: #403838; font-family: Arial, Helvetica, sans-serif; font-size: 13px; line-height: 19px; text-align: justify">Dynamic compression tests were performed by means of a Split Hopkinson Pressure Bar (SHPB). Test materials were 2124Al alloys reinforced with 17% volume fraction of 3, 13 and 37 μm SiC particles, respectively. Under strain rate ε = 2100 l/s, SiC particles have a strong effect on σ</span><sub style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: Arial, Helvetica, sans-serif; line-height: 0; text-align: justify; color: #403838">0.2</sub><span style="color: #403838; font-family: Arial, Helvetica, sans-serif; font-size: 13px; line-height: 19px; text-align: justify"> of the composites and the σ</span><sub style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: Arial, Helvetica, sans-serif; line-height: 0; text-align: justify; color: #403838">0.2</sub><span style="color: #403838; font-family: Arial, Helvetica, sans-serif; font-size: 13px; line-height: 19px; text-align: justify"> increases with different SiC particle size in the following order: 2124Al-alloy → 124Al/SiC</span><sub style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: Arial, Helvetica, sans-serif; line-height: 0; text-align: justify; color: #403838">p</sub><span style="color: #403838; font-family: Arial, Helvetica, sans-serif; font-size: 13px; line-height: 19px; text-align: justify"> (37 μm) → 2124Al/SiC</span><sub style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: Arial, Helvetica, sans-serif; line-height: 0; text-align: justify; color: #403838">p</sub><span style="color: #403838; font-family: Arial, Helvetica, sans-serif; font-size: 13px; line-height: 19px; text-align: justify"> (13 μm) → 2124Al/SiC</span><sub style="margin: 0px; padding: 0px; border: 0px; outline-style: none; font-size: 0.85em; font-family: Arial, Helvetica, sans-serif; line-height: 0; text-align: justify; color: #403838">p</sub><span style="color: #403838; font-family: Arial, Helvetica, sans-serif; font-size: 13px; line-height: 19px; text-align: justify"> (3 μm), and the strain hardening of the composites depends mainly on the strain hardening of matrix, 2124A1 alloy. The results of dimensional analysis present that the flow stress of these composites not only depends on the property of reinforcement and matrix but also relates to the microstructure scale, matrix grain size, reinforcement size, the distance between reinforcements and dislocations in matrix. The normalized flow stress here is a function of inverse power of the edge-edge particle spacing, dislocation density and matrix grain size. Close-up observation shows that, in the composite containing SiC particles (3 μm), localized deformation formed readily comparing with other materials under the same loading condition. Microscopic observations indicate that different plastic flow patterns occur within the matrix due to the presence of hard particles with different sizes.</span>

Identificador

http://dspace.imech.ac.cn/handle/311007/17456

http://www.irgrid.ac.cn/handle/1471x/2079

Idioma(s)

英语

Fonte

Journal of Composite Materials, 2000,34 (2): 101-115

Palavras-Chave #力学
Tipo

期刊论文