941 resultados para citrate synthase
Resumo:
The primary objective of the present work was to study the electronic and in vitro electrochemical properties of micro-arc oxidized titania films on Cp Ti, fabricated independently in various electrolyte solutions consisting of anions such as phosphate (PO43-), borate (B4O72-), citrate (C6H5O73-) and silicate (SiO32-). Further the role of anions on the structural, morphological and compositional properties of the fabricated films was studied. All the titania films were developed by micro-arc oxidation (MAO) technique for a fixed treatment time of 8 min under constant current mode. The surface morphology, elemental distribution, composition and structural characteristics of the films were assessed by scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The thermodynamic and kinetic corrosion properties of the films were studied under simulated body fluid (SBF) conditions (pH 7.4 and 37 degrees C) by conducting chronopotentiometric and potentiodynamic polarization tests. Electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit modelling was carried out to analyse the frequency response and Mott-Schottky analysis was performed to study the semiconducting (electronic) properties of the films. Salt spray fog accelerated corrosion test was conducted for 168h as per ASTM B117 standard to corroborate the corrosion and semiconducting properties of the samples based on the visual examination. The XRD results showed that the transformation from the metastable anatase phase to the thermodynamically stable rutile phase and the crystalline growth of the respective phases were strongly influenced by the addition of anions. The SEM-EDS results demonstrated that the phosphorous (P) content in the films varied from 2.4 at% to 5.0 at% indicating that the amount of P in the films could be modified by adding an appropriate electrolyte additive. The electrochemical corrosion test results showed that the film fabricated in citrate (C6H5O73-) containing electrolyte is thermodynamically and kinetically more stable compared to that of all the others. The results of the Mott-Schottky analysis indicated that all the fabricated films showed an n-type semiconducting behaviour and the film developed in citrate (C6H5O73-) containing electrolyte exhibited the lowest donor concentration and the most negative flat band potential that contributed to its highest corrosion resistance in SBF solution. The results of the salt spray accelerated corrosion tests were in agreement with those obtained from the electrochemical and Mott-Schottky analysis.
Resumo:
Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, d-aminolevulinate synthase (ALAS), and the last enzyme, ferrochelatase (FC), in the heme-biosynthetic pathway of Plasmodium berghei (Pb). The wild-type and knockout (KO) parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using 4-(14) C] aminolevulinic acid (ALA). We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.
Interaction of Silver Nanoparticles with Serum Proteins Affects Their Antimicrobial Activity In Vivo
Resumo:
The emergence of multidrug-resistant bacteria is a global threat for human society. There exist recorded data that silver was used as an antimicrobial agent by the ancient Greeks and Romans during the 8th century. Silver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities, with minimal cytotoxic effects on the cells. However, very few reports have shown the usage of AgNPs for antibacterial therapy in vivo. In this study, we deciphered the importance of the chosen methods for synthesis and capping of AgNPs for their improved activity in vivo. The interaction of AgNPs with serum albumin has a significant effect on their antibacterial activity. It was observed that uncapped AgNPs exhibited no antibacterial activity in the presence of serum proteins, due to the interaction with bovine serum albumin (BSA), which was confirmed by UV-Vis spectroscopy. However, capped AgNPs with citrate or poly(vinylpyrrolidone)] exhibited antibacterial properties due to minimized interactions with serum proteins. The damage in the bacterial membrane was assessed by flow cytometry, which also showed that only capped AgNPs exhibited antibacterial properties, even in the presence of BSA. In order to understand the in vivo relevance of the antibacterial activities of different AgNPs, a murine salmonellosis model was used. It was conclusively proved that AgNPs capped with citrate or PVP exhibited significant antibacterial activities in vivo against Salmonella infection compared to uncapped AgNPs. These results clearly demonstrate the importance of capping agents and the synthesis method for AgNPs in their use as antimicrobial agents for therapeutic purposes.
Resumo:
Short-chain fatty acids (SCFAs) play a major role in carbon cycle and can be utilized as a source of carbon and energy by bacteria. Salmonella typhimurium propionate kinase (StTdcD) catalyzes reversible transfer of the gamma-phosphate of ATP to propionate during L-threonine degradation to propionate. Kinetic analysis revealed that StTdcD possesses broad ligand specificity and could be activated by various SCFAs (propionate > acetate approximate to butyrate), nucleotides (ATP approximate to GTP > CTP approximate to TTP; dATP > dGTP > dCTP) and metal ions (Mg2+ approximate to Mn2+ > Co2+). Inhibition of StTdcD by tricarboxylic acid (TCA) cycle intermediates such as citrate, succinate, alpha-ketoglutarate and malate suggests that the enzyme could be under plausible feedback regulation. Crystal structures of StTdcD bound to PO4 (phosphate), AMP, ATP, Ap4 (adenosine tetraphosphate), GMP, GDP, GTP, CMP and CTP revealed that binding of nucleotide mainly involves hydrophobic interactions with the base moiety and could account for the broad biochemical specificity observed between the enzyme and nucleotides. Modeling and site-directed mutagenesis studies suggest Ala88 to be an important residue involved in determining the rate of catalysis with SCFA substrates. Molecular dynamics simulations on monomeric and dimeric forms of StTdcD revealed plausible open and closed states, and also suggested role for dimerization in stabilizing segment 235-290 involved in interfacial interactions and ligand binding. Observation of an ethylene glycol molecule bound sufficiently close to the gamma-phosphate in StTdcD complexes with triphosphate nucleotides supports direct in-line phosphoryl transfer. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Fine powders comprising nanocrystallites of barium sodium niobate, Ba2NaNb5O15 (BNN) were obtained via a citrate assisted sol-gel route at a much lower temperature than that of the conventional solid-state reaction route. The phase evolution of BNN as a function of temperature was investigated by thermogravimetric analysis (TGA), differential thermal analysis (DTA), Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). DTA data followed by XRD studies confirmed the BNN formation temperature to be around 923 K. The as-synthesized powders heat-treated at 923 K/10 h attained an orthorhombic structure akin to that of the parent BNN phase. Transmission electron microscopy revealed that the nanocrystallites are associated with dislocations. The optical band gap was calculated using the Kubelka-Munk function. These nanocrystallites exhibited strong visible photoluminescence (PL) at room temperature. The PL mechanism was explained by invoking the dielectric confinement effect, defect states and generation of self-trapped excitons.
Resumo:
Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H center dot center dot center dot O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.
Resumo:
Background: Genetic variants of NOD2 are linked to inflammatory bowel disease (IBD) etiology. Results: DSS model of colitis in wild-type and inducible nitric-oxide synthase (iNOS) null mice revealed that NOD2-iNOS/NO-responsive microRNA-146a targets NUMB gene facilitating Sonic hedgehog (SHH) signaling. Conclusion: miR-146a-mediated NOD2-SHH signaling regulates gut inflammation. Significance: Identification of novel regulators of IBD provides new insights into pathophysiology and development of new therapy concepts. Inflammatory bowel disease (IBD) is a debilitating chronic inflammatory disorder of the intestine. The interactions between enteric bacteria and genetic susceptibilities are major contributors of IBD etiology. Although genetic variants with loss or gain of NOD2 functions have been linked to IBD susceptibility, the mechanisms coordinating NOD2 downstream signaling, especially in macrophages, during IBD pathogenesis are not precisely identified. Here, studies utilizing the murine dextran sodium sulfate model of colitis revealed the crucial roles for inducible nitric-oxide synthase (iNOS) in regulating pathophysiology of IBDs. Importantly, stimulation of NOD2 failed to activate Sonic hedgehog (SHH) signaling in iNOS null macrophages, implicating NO mediated cross-talk between NOD2 and SHH signaling. NOD2 signaling up-regulated the expression of a NO-responsive microRNA, miR-146a, that targeted NUMB gene and alleviated the suppression of SHH signaling. In vivo and ex vivo studies confirmed the important roles for miR-146a in amplifying inflammatory responses. Collectively, we have identified new roles for miR-146a that established novel cross-talk between NOD2-SHH signaling during gut inflammation. Potential implications of these observations in therapeutics could increase the possibility of defining and developing better regimes to treat IBD pathophysiology.
Resumo:
The effect of Sr doping in CeO2 for its use as solid electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFCs) has been explored here. Ce1-xSrxO2-delta (x = 0.05-0.2) are successfully synthesized by citrate-complexation method. XRD, Raman, FT-IR, FE-SEM/EDX and electrochemical impedance spectra are used for structural and electrical characterizations. The formation of well crystalline cubic fluorite structured solid solution is observed for x = 0.05 based on XRD and Raman spectra. For compositions i.e., x > 0.05, however, a secondary phase of SrCeO3 is confirmed by the peak at 342 cm(-1) in Raman spectra. Although the oxygen ion conductivity was found to decrease with increase in x, based on ac-impedance studies, conductivity of Ce0.95Sr0.05O2-delta was found to be higher than of Ce0.95Gd0.1O2-delta and Ce0.8Gd0.2O2-delta. The decrease in conductivity of Ce1-xSrxO2-delta with increasing dopant concentration is ascribed to formation of impurity phase SrCeO3 as well as the formation of neutral associated pairs, Se `' Ce V-o. The activation energies are found to be 0.77, 0.83, 0.85 and 0.90 eV for x = 0.05, 0.1, 0.15 and 0.20, respectively. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
A series of ferrite samples with the compositional formula, Ni0.5Co0.5-xZnxFe2O4 (0 <= x <= 0.5), was prepared using the citrate based sol gel method for the better understanding of zinc doping on the structural and magnetic properties. The Rietveld-refined X-ray diffraction data revealed that the samples are having cubic structure with the Fd-3m space group. The lattice parameter increased linearly with increasing Zn content. The surface morphology and stoichiometric ratio of the compositional elements were analyzed by scanning electron microscopy equipped with energy dispersive spectroscopy (EDS). EDS showed that the elemental ratios were stoichiometric. An examination of the magnetic properties revealed an increase in saturation magnetization with increasing Zn concentration up to x=0.3 and a decrease thereafter. These results could be explained using Neel's collinear two-sub-lattice model and three-sub-lattice non-collinear model suggested by Yafet and Kittel. The magnetic cubic anisotropy constant determined by the law of approach to saturation decreased with increasing Zn content. The underlying mechanism behind observed behavior was discussed qualitatively. (C) 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Background: Dictamnus dasycarpus is widely used as a traditional remedy for the treatment of eczema, rheumatism, and other inflammatory diseases in Asia. The current study investigates the molecular mechanism of anti-inflammatory action of the ethanol extract of Dictamnus dasycarpus leaf (DE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Methods: Nitric oxide (NO) production was assessed by Griess reaction and the mRNA and protein expressions of pro inflammatory cytokines, transcription factor, and enzymes were determined by real-time RT-PCR and immunoblotting analysis. Results: DE (0.5 and 1 mg/mL) suppressed the NO production by 10 and 33%, respectively, compared to the untreated group in LPS-stimulated RAW 264.7 cells. DE (0.5 and 1 mg/mL) reduced the mRNA expression of key transcription factor nuclear factor-kappa B by 7 and 24%, respectively compared to the untreated group in LPS activated macrophage. The pro inflammatory cytokines such as tumor necrosis factor a and interleukin 1 beta were also decreased by DE treatment. Moreover, the protein expression of pro inflammatory enzymes, inducible nitric oxide synthase and cyclooxygenase 2 were also dramatically attenuated by DE in a dose dependent manner. Conclusions: These results suggest that Dictamnus dasycarpus leaf has a potent anti-inflammatory activity and can be used for the development of new anti-inflammatory agents.
Resumo:
A series of scheelite-type Eu3+-activated CaMoO4 phosphors were synthesized by the nitrate-citrate gel combustion method. All the compounds crystallized in the tetragonal structure with space group I4(1)/a (No. 88). FESEM results reveal the spherical-like morphology. The CaMoO4 phosphor exhibited broad emission centered at 500 nm under the excitation of 298 nm wavelength, while Eu3+-activated CaMoO4 shows an intense characteristic red emission peak at 615 nm at different excitation wavelengths, due to D-5(0) -> F-7(2) transition of Eu3+ ions. The intensities of transitions between different J levels depend on the symmetry of the local environment of Eu3+ ions and were estimated using the Judd-Ofelt analysis. The high asymmetric ratio revealed that Eu3+ occupies sites with a low symmetry and without an inversion center. The CIE chromaticity co-ordinates (x, y) were calculated from emission spectra, and the values were close to the NTSC standard. Therefore, the present phosphor is highly useful for LEDs applications.
Resumo:
A simple colorimetric detection of melamine was studied using 15 nm (AuNPs-I), 30 nm (AuNPs-II), and 40 nm (AuNPs-III) citrate-capped gold nanoparticles (AuNPs). The AuNPs aggregated in aqueous solution in the presence of melamine, showing a visual color change from red to blue. This color change led to a shift in the absorption peak from 527 nm, 526 nm, and 525 nm to 638 nm, 626 nm, and 680 nm for AuNPs-I, AuNPs-II, and AuNPs-III, respectively. For all the three AuNPs, linearity was observed between the melamine concentration in aqueous solution and the absorbance ratios, A(638/527), A(626/525), and A(680/526), respectively. The limit of detection (LOD) for melamine for the AuNPs-II was found to be 2.37 x 10(-8) M (correlation coefficient R-2 = 0.9745), which showed better sensitivity as compared to the LOD of the AuNPs-I and AuNPs-III, which were 3.3 x 10(-8) M and 8.9 x 10(-8) M, respectively. The synthesis of AuNPs-II also involved a lower HAuCl4 concentration compared with the other two types of AuNPs, which may reduce the process cost. The AuNPs-II was selected to analyze melamine in pre-treated milk samples, and the recovery percentage was in the range of 91-106%. Thus, the efficient detection of melamine was possible using AuNPs-II for the on-site detection without the aid of expensive instruments.
Resumo:
We report the synthesis of Eu3+-activated SrMoO4 phosphors by the facile nitrate-citrate gel combustion method. Powder XRD and Rietveld refinement data confirmed that these phosphors have a monophasic scheelite-type tetragonal structure with space group I4(1)/a (No. 88). FESEM micrographs indicate the agglomerated spherical particles. FTIR spectra showed four stretching and bending vibrational modes (2A(u) and 2E(u)). UV-Visible absorption spectroscopy illustrated that the optical band gap energy (E-g) values increase with increase in Eu3+ concentration. The host SrMoO4 phosphor exhibited an intense blue emission under UV excitation (368 nm). The Eu3+-activated SrMoO4 phosphors revealed characteristic luminescence due to Eu3+ ion corresponding to D-5(1) -> F-7(J) (J = 1,2) and D-5(0) -> F-7(J) (J = 1,2,3,4) transitions upon 465 nm excitation. The electric dipole transition located at 615 nm (D-5(0) -> F-7(2)) was stronger than the magnetic dipole transition located at 592 nm (D-5(0) -> F-7(1)). Intensity parameters (Omega(2), Omega(4)) and radiative properties such as transition probabilities (A(T)), radiative lifetime (tau(rad)) and branching ratio (beta) of Eu3+-activated SrMoO4 phosphors were calculated using the Judd-Ofelt theory. Based on the CIE chromaticity diagram, these phosphors can be promising materials for the development of blue and orange-red component in white LEDs. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Conducting polymer/ferrite nanocomposites with an organized structure provide a new functional hybrid between organic and inorganic materials. The most popular among the conductive polymers is the polyaniline (PANI) due to its wide application in different fields. In the present work nickel ferrite (NiFe2O4) nanoparticles were prepared by sol-gel citrate-nitrate method with an average size of 21.6nm. PANI/NiFe2O4 nanoparticles were synthesized by a simple general and inexpensive in-situ polymerization in the presence of NiFe2O4 nanoparticles. The effects of NiFe2O4 nanoparticles on the dc-electrical properties of polyaniline were investigated. The structural components in the nanocomposites were identified from Fourier Transform Infrared (FTIR) spectroscopy. The crystalline phase of nanocomposites was characterized by X-Ray Diffraction (XRD). The Scanning Electron Micrograph (SEM) reveals that there was some interaction between the NiFe2O4 particles and polyaniline and the nanocomposites are composed of polycrystalline ferrite nanoparticles and PANI. The dc conductivity of polyaniline/NiFe2O4 nanocomposites have been measured as a function of temperature in the range of 80K to 300K. It is observed that the room temperature conductivity sigma(RT) decreases with increase in the relative content of NiFe2O4. The experimental data reveals that the resistivity increases for all composites with decrease of temperature exhibiting semiconductor behaviour.
Resumo:
Statins are known to modulate cell surface cholesterol (CSC) and AMP-activated protein kinase (AMPK) in nonneural cells; however no study demonstrates whether CSC and AMPK may regulate simvastatin induced neuritogenesis (SIN). We found that simvastatin (SIM) maintains CSC as shown by Fillipin III staining, Flotillin-2 protein expression / localization and phosphorylation of various receptor tyrosine kinases (RTKs) in the plasma membrane. Modulation of CSC revealed that SIN is critically dependent on this CSC. Simultaneously, phospho array for mitogen activated protein kinases (MAPKs) revealed PI3K / Akt as intracellular pathway which modulates lipid pathway by inhibiting AMPK activation. Though, SIM led to a transient increase in AMPK phosphorylation followed by a sudden decline; the effect was independent of PI3K. Strikingly, AMPK phosphorylation was regulated by protein phosphatase 2A (PP2A) activity which was enhanced upon SIM treatment as evidenced by increase in threonine phosphorylation. Moreover, it was observed that addition of AMP analogue and PP2A inhibitor inhibited SIN. Biocomposition of neurites shows that lipids form a major part of neurites and AMPK is known to regulate lipid metabolism majorly through acetyl CoA carboxylase (ACC). AMPK activity is negative regulator of ACC activity and we found that phosphorylation of ACC started to decrease after 6 hrs which becomes more pronounced at 12 hrs. Addition of ACC inhibitor showed that SIN is dependent on ACC activity. Simultaneously, addition of Fatty acid synthase (FAS) inhibitor confirmed that endogenous lipid pathway is important for SIN. We further investigated SREBP-1 pathway activation which controls ACC and FAS at transcriptional level. However, SIM did not affect SREBP-1 processing and transcription of its target genes likes ACC1 and FAS. In conclusion, this study highlights a distinct role of CSC and ACC in SIN which might have implication in process of neuronal differentiation induced by other agents.