969 resultados para bone marrow derived mesenchymal cells (BMSCs)
Resumo:
Questo studio ha valutato l'efficacia di un approccio rigenerativo utilizzando cellule staminali mesenchimali (MSC) e uno scaffold di idrossiapatite pura e porosa (HA) progettata con tecnologia CAD-CAM per sostituire il condilo dell'articolazione temporomandibolare (ATM). Metodi.Uno scaffolds di HA con porosità totale del 70% è stato prototipato per sostituire i due condili temporomandibolari (sinistro e destro) dello stesso animale. MSC sono state ottenute dalla cresta iliaca ed espanse in coltura. Guide chirurgiche su misura sono state create e utilizzate per esportare la pianificazione virtuale delle linee di taglio dell'osso nell'ambiente chirurgico. Sei pecore sono state sacrificate a 4 mesi dopo l'intervento.Gli scaffold sono stati espiantati, campioni istologici sono stati preparati, ed è stata eseguota l'analisi istomorfometrica. Risultati.L'analisi della riduzione di porosità per apposizione di osso neoformato mostrata una differenza statisticamente significativa tra la formazione ossea nei condili carichi di MSC rispetto ai condili senza (
Resumo:
Friend murine leukemia Virus (FV) infection of immunocompetent mice is a well- established model to acquire further knowledge about viral immune suppression mechanisms, with the aim to develop therapeutics against retrovirus-induced diseases. Interestingly, BALB/c mice are infected by low doses of FV and die from FV-induced erythroleukemia, while C57/BL6 mice are infected by FV only at high viral dose, and remain persistently infected for their whole life. Due to the central role of dendritic cells (DC) in the induction of anti-viral responses, we asked for their functional role in the genotype-dependent sensitivity towards FV infection. In my PhD study I showed that bone marrow (BM)-derived DC differentiated from FV-infected BM cells obtained from FV-inoculated BALB/c (FV susceptible) and C57BL/6 (FV resistant) mice showed an increased endocytotic activity and lowered expression of MHCII and of costimulatory receptors as compared with non-infected control BMDC. FV-infected BMDC from either mouse strain were partially resistant towards stimulation-induced upregulation of MHCII and costimulators, and accordingly were poor T cell stimulators in vitro and in vivo. In addition, FV-infected BMDC displayed an altered expression profile of proinflammator cytokines and favoured Th2 polarization. Ongoing work is focussed on elucidating the functional role of proteins identified as differentially expressed in FV-infected DC in a genotype-dependent manner, which therefore may contribute to the differential course of FV infection in vivo in BALB/c versus C57BL/6 mice. So far, more than 300 proteins have been identified which are differently regulated in FV-infected vs. uninfected DC from both mouse strains. One of these proteins, S100A9, was strongly upregulated specifically in BMDC derived from FV-infected C57BL/6 BM cells. S100A9-/- mice were more sensitive towards inoculation with FV than corresponding wild type (WT) mice (both C57BL/6 background), which suggests a decisive role of this factor for anti-viral defense. In addition, FV-infected S100A9-/- BMDC showed lower motility than WT DC. The future work is aimed to further elucidate the functional importance of S100A9 for DC functions. To exploit the potential of DC for immunotherapeutic applications, in another project of this PhD study the usability of different types of functionalized nanoparticles
Resumo:
Acute myeloid leukaemia (AML) is a cancer of the haematopoietic system, which can in many cases only be cured by haematopoietic stem cell transplantation (HSCT) and donor lymphocyte infusion (DLI) (Burnett et al., 2011). This therapy is associated with the beneficial graft-versus-leukaemia (GvL) effect mediated by transplanted donor T and NK cells that either recognise mismatch HLA molecules or polymorphic peptides, so-called minor histocompatibility antigens, leukaemia-associated or leukaemia-specific antigens in the patient and thus eliminate remaining leukaemic blasts. Nevertheless, the mature donor-derived cells often trigger graft-versus-host disease (GvHD), leading to severe damages in patients’ epithelial tissue, mainly skin, liver and intestine (Bleakley & Riddell, 2004). Therefore, approaches for the selective mediation of strong GvL effects are needed, also in order to prevent relapse after transplantation. One promising opportunity is the in vitro generation of AML-reactive CD4+ T cells for adoptive transfer. CD4+ T cells are advantageous compared to CD8+ T cells, as HLA class II molecules are under non-inflammatory conditions only expressed on haematopoietic cells; a fact that would minimise GvHD (Klein & Sato, 2000). In this study, naive CD4+ T cells were isolated from healthy donors and were successfully stimulated against primary AML blasts in mini-mixed lymphocyte/leukaemia cell cultures (mini-MLLC) in eight patient/donor pairs. After three to seven weekly restimulations, T cells were shown to produce TH1 type cytokines and to be partially of monoclonal origin according to their TCR Vβ chain usage. Furthermore, they exhibited lytic activity towards AML blasts, which was mediated by the release of granzymes A and B and perforin. The patient/donor pairs used in this study were fully HLA-class I matched, except for one pair, and also matched for HLA-DR and -DQ, whereas -DP was mismatched in one or both alleles, reflecting the actual donor selection procedure in the clinic (Begovich et al., 1992). Antibody blocking experiments suggested that the generated CD4+ T cells were directed against the HLA-DP mismatches, which could be confirmed by the recognition of donor-derived lymphoblastoid cell lines (LCLs) electroporated with the mismatched DP alleles. Under non-inflammatory conditions primary fibroblasts did not express HLA-DP and were thus not recognised, supporting the idea of a safer application of CD4+ T cells regarding induction of GvHD. For the assessment of the biological significance of these T cells, they were adoptively transferred into NSG mice engrafted with human AML blasts, where they migrated to the bone marrow and lymphoid tissue and succeeded in eliminating the leukaemic burden after only one week. Therefore, AML-reactive CD4+ T cells expanded from the naive compartment by in vitro stimulation with primary leukaemia blasts appear to be a potent tool for DLI in HSCT patients and promise to mediate specific GvL effects without causing GvHD.
Resumo:
Inflammatory cytokines such as tumor necrosis factor-alpha (TNFα) are potent stimulators of osteoclast formation and bone resorption and are frequently associated with pathologic bone metabolism. The cytokine exerts specific effects on its target cells and constitutes a part of the cellular microenvironment. Previously, TNFα was demonstrated to inhibit the development of osteoclasts in vitro via an osteoblast-mediated pathway. In the present study, the molecular mechanisms of the inhibition of osteoclastogenesis were investigated in co-cultures of osteoblasts and bone marrow cells (BMC) and in cultures of macrophage-colony stimulating factor (M-CSF) dependent, non-adherent osteoclast progenitor cells (OPC) grown with M-CSF and receptor activator of NF-κB ligand (RANKL). Granulocyte-macrophage colony stimulating factor (GM-CSF), a known inhibitor of osteoclastogenesis was found to be induced in osteoblasts treated with TNFα and the secreted protein accumulated in the supernatant. Dexamethasone (Dex), an anti-inflammatory steroid, caused a decrease in GM-CSF expression, leading to partial recovery of osteoclast formation. Flow cytometry analysis revealed that in cultures of OPC, supplemented with 10% conditioned medium (CM) from osteoblasts treated with TNFα/1,25(OH)(2)D(3), expression of RANK and CD11c was suppressed. The decrease in RANK expression may be explained by the finding, that GM-CSF and the CM from wt osteoblasts were found to suppress the expression of c-Fos, Fra-1, and Nfatc-1. The failure of OPC to develop into CD11c(+) dendritic cells suggests that cell development is not deviated to an alternative differentiation pathway, but rather, that the monocytes are maintained in an undifferentiated, F4/80(+), state. The data further implies possible interactions among inflammatory cytokines. GM-CSF induced by TNFα acts on early hematopoietic precursors, inhibiting osteoclastogenesis while acting as the growth factor for M-CSF independent inflammatory macrophages. These in turn may condition a microenvironment enhancing osteoclast differentiation and bone resorption upon migration of the OPC from circulation to the bone/bone marrow compartment.
Resumo:
Activated lymphocytes and lymphoid-tissue inducer cells express lymphotoxins (LTs), which are essential for the organogenesis and maintenance of lymphoreticular microenvironments. Here we describe that T-cell-restricted overexpression of LT induces fulminant thymic involution. This phenotype was prevented by ablation of the LT receptors tumor necrosis factor receptor (TNFR) 1 or LT beta receptor (LTbetaR), representing two non-redundant pathways. Multiple lines of transgenic Ltalphabeta and Ltalpha mice show such a phenotype, which was not observed on overexpression of LTbeta alone. Reciprocal bone marrow transfers between LT-overexpressing and receptor-ablated mice show that involution was not due to a T cell-autonomous defect but was triggered by TNFR1 and LTbetaR signaling to radioresistant stromal cells. Thymic involution was partially prevented by the removal of one allele of LTbetaR but not of TNFR1, establishing a hierarchy in these signaling events. Infection with the lymphocytic choriomeningitis virus triggered a similar thymic pathology in wt, but not in Tnfr1(-/-) mice. These mice displayed elevated TNFalpha in both thymus and plasma, as well as increased LTs on both CD8(+) and CD4(-)CD8(-) thymocytes. These findings suggest that enhanced T cell-derived LT expression helps to control the physiological size of the thymic stroma and accelerates its involution via TNFR1/LTbetaR signaling in pathological conditions and possibly also in normal aging.
Identification of small Sca-1(+), Lin(-), CD45(-) multipotential cells in the neonatal murine retina
Resumo:
OBJECTIVE: Bone marrow contains a subset of stem cells that give rise to nonhematopoietic lineages. These nonhematopoietic stem cells appear heterogeneous and contain cells committed to mesenchymal and endothelial lineages, as well as more primitive multipotential cells resembling progenitors of germ cells and very small embryonic/epiblast-like stem cells (VSELs). Nonhematopoietic stem cells can be mobilized from the bone marrow in response to tissue injury, and cells with similar properties have been found in cord blood and normal adult organs. However, the relationship between bone marrow cells and these adult organ stem cells is still unclear. The differentiation potential of some adult stem cells is organ-restricted, but other populations appear to retain multipotential capacity. MATERIALS AND METHODS: A population of small Sca-1(+), lineage-negative (Lin(-)), CD45(-) cells resembling VSELs were isolated from neonatal mouse retina by cell sorting. Differentiation of the cells in culture was achieved by exposure to embryonic stem cell differentiation protocols. RESULTS: VSEL-like cells comprise 1.5% of the neonatal mouse retina. They remain quiescent during retinal differentiation, and thus they do not contribute to normal retinal development. However, they display eye cell differentiation potential in culture and they are also multipotential and can give rise to cells representative of all three embryonic layers. CONCLUSIONS: The neonatal retina is an abundant postnatal source of multipotential VSEL-like cells that can differentiate in culture into a variety of lineages.
Resumo:
Mesenchymal stem cells (MSCs) are expected to have a fundamental role in future cell-based therapies because of their high proliferative ability, multilineage potential, and immunomodulatory properties. Autologous transplantations have the "elephant in the room" problem of wide donor variability, reflected by variability in MSC quality and characteristics, leading to uncertain outcomes in the use of these cells. We propose life imaging as a tool to characterize populations of human MSCs. Bone marrow MSCs from various donors and in vitro passages were evaluated for their in vitro motility, and the distances were correlated to the adipogenic, chondrogenic, and osteogenic differentiation potentials and the levels of senescence and cell size. Using life-image measuring of track lengths of 70 cells per population for a period of 24 hours, we observed that slow-moving cells had the higher proportion of senescent cells compared with fast ones. Larger cells moved less than smaller ones, and spindle-shaped cells had an average speed. Both fast cells and slow cells were characterized by a low differentiation potential, and average-moving cells were more effective in undergoing all three lineage differentiations. Furthermore, heterogeneity in single cell motility within a population correlated with the average-moving cells, and fast- and slow-moving cells tended toward homogeneity (i.e., a monotonous moving pattern). In conclusion, in vitro cell motility might be a useful tool to quickly characterize and distinguish the MSC population's differentiation potential before additional use.
Resumo:
Neutropenia is probably the strongest known predisposition to infection with otherwise harmless environmental or microbiota-derived species. Because initial swarming of neutrophils at the site of infection occurs within minutes, rather than the hours required to induce "emergency granulopoiesis," the relevance of having high numbers of these cells available at any one time is obvious. We observed that germ-free (GF) animals show delayed clearance of an apathogenic bacterium after systemic challenge. In this article, we show that the size of the bone marrow myeloid cell pool correlates strongly with the complexity of the intestinal microbiota. The effect of colonization can be recapitulated by transferring sterile heat-treated serum from colonized mice into GF wild-type mice. TLR signaling was essential for microbiota-driven myelopoiesis, as microbiota colonization or transferring serum from colonized animals had no effect in GF MyD88(-/-)TICAM1(-/-) mice. Amplification of myelopoiesis occurred in the absence of microbiota-specific IgG production. Thus, very low concentrations of microbial Ags and TLR ligands, well below the threshold required for induction of adaptive immunity, sets the bone marrow myeloid cell pool size. Coevolution of mammals with their microbiota has probably led to a reliance on microbiota-derived signals to provide tonic stimulation to the systemic innate immune system and to maintain vigilance to infection. This suggests that microbiota changes observed in dysbiosis, obesity, or antibiotic therapy may affect the cross talk between hematopoiesis and the microbiota, potentially exacerbating inflammatory or infectious states in the host.
Resumo:
Connexin-43 (Cx43), a gap junction protein involved in control of cell proliferation, differentiation and migration, has been suggested to have a role in hematopoiesis. Cx43 is highly expressed in osteoblasts and osteogenic progenitors (OB/P). To elucidate the biologic function of Cx43 in the hematopoietic microenvironment (HM) and its influence in hematopoietic stem cell (HSC) activity, we studied the hematopoietic function in an in vivo model of constitutive deficiency of Cx43 in OB/P. The deficiency of Cx43 in OB/P cells does not impair the steady state hematopoiesis, but disrupts the directional trafficking of HSC/progenitors (Ps) between the bone marrow (BM) and peripheral blood (PB). OB/P Cx43 is a crucial positive regulator of transstromal migration and homing of both HSCs and progenitors in an irradiated microenvironment. However, OB/P Cx43 deficiency in nonmyeloablated animals does not result in a homing defect but induces increased endosteal lodging and decreased mobilization of HSC/Ps associated with proliferation and expansion of Cxcl12-secreting mesenchymal/osteolineage cells in the BM HM in vivo. Cx43 controls the cellular content of the BM osteogenic microenvironment and is required for homing of HSC/Ps in myeloablated animals
Resumo:
Pre-B-cell growth-stimulating factor/stromal cell-derived factor 1 (PBSF/SDF-1) is a member of the CXC group of chemokines that is initially identified as a bone marrow stromal cell-derived factor and as a pre-B-cell stimulatory factor. Although most chemokines are thought to be inducible inflammatory mediators, PBSF/SDF-1 is essential for perinatal viability, B lymphopoiesis, bone marrow myelopoiesis, and cardiac ventricular septal formation, and it has chemotactic activities on resting lymphocytes and monocytes. In this paper, we have isolated a cDNA that encodes a seven transmembrane-spanning-domain receptor, designated pre-B-cell-derived chemokine receptor (PB-CKR) from a murine pre-B-cell clone, DW34. The deduced amino acid sequence has 90% identity with that of a HUMSTSR/fusin, a human immunodeficiency virus 1 (HIV-1) entry coreceptor. However, the second extracellular region has lower identity (67%) compared with HUMSTSR/fusin. PB-CKR is expressed during embryo genesis and in many organs and T cells of adult mice. Murine PBSF/SDF-1 induced an increase in intracellular free Ca2+ in DW34 cells and PB-CKR-transfected Chinese hamster ovary (CHO) cells, suggesting that PB-CKR is a functional receptor for murine PBSF/SDF-1. Murine PBSF/SDF-1 also induced Ca2+ influx in fusin-transfected CHO cells. On the other hand, considering previous results that HIV-1 does not enter murine T cells that expressed human CD4, PB-CKR may not support HIV-1 infection. Thus, PB-CKR will be an important tool for functional mapping of HIV-1 entry coreceptor fusin and for understanding the function of PBSF/SDF-1 further.
Resumo:
Mammalian hematopoietic stem cell (HSC) commitment and differentiation into lymphoid lineage cells proceed through a series of developmentally restricted progenitor compartments. A complete understanding of this process, and how it differs from HSC commitment and differentiation into cells of the myeloid/erythroid lineages, requires the development of model systems that support HSC commitment to the lymphoid lineages. We now describe a human bone marrow stromal cell culture that preferentially supports commitment and differentiation of human HSC to CD19+ B-lineage cells. Fluorescence activated cell sorterpurified CD34++/lineage-cells were isolated from fetal bone marrow and cultured on human fetal bone marrow stromal cells in serum-free conditions containing no exogenous cytokines. Over a period of 3 weeks, CD34++/lineage- cells underwent commitment, differentiation, and expansion into the B lineage. Progressive changes included: loss of CD34, acquisition of and graded increases in the level of cell surface CD19, and appearance of immature B cells expressing mu/kappa or mu/lambda cell surface Ig receptors. The tempo and phenotype of B-cell development was not influenced by the addition of IL-7 (10 ng/ml), or by the addition of goat anti-IL-7 neutralizing antibody. These results indicate a profound difference between mouse and human in the requirement for IL-7 in normal B-cell development, and provide an experimental system to identify and characterize human bone marrow stromal cell-derived molecules crucial for human B lymphopoiesis.
Resumo:
Pluripotent hematopoietic stem cells (PHSCs) show self-renewal and give rise to all blood cell types. The extremely low number of these cells in primary hematopoietic organs and the lack of culture systems that support proliferation of undifferentiated PHSCs have precluded the study of both the biology of these cells and their clinical application. We describe here cell lines and clones derived from PHSCs that were established from hematopoietic cells from the fetal liver or bone marrow of normal and p53-deficient mice with a combination of four growth factors. Most cell lines were Sca-1+, c-Kit+, PgP-1+, HSA+, and Lin- (B-220-, Joro 75-, 8C5-, F4/80-, CD4-, CD8-, CD3-, IgM-, and TER 119-negative) and expressed three new surface markers: Joro 177, Joro 184, and Joro 96. They did not synthesize RNA transcripts for several genes expressed at early stages of lymphocyte and myeloid/erythroid cell development. The clones were able to generate lymphoid, myeloid, and erythroid hematopoietic cells and to reconstitute the hematopoietic system of irradiated mice for a long time. The availability of lymphohematopoietic stem cell lines should facilitate the analysis of the molecular mechanisms that control self-renewal and differentiation and the development of efficient protocols for somatic gene therapy.
Resumo:
Neuroblastoma (NB) is characterized by the second highest spontaneous regression of any human malignant disorder, a phenomenon that remains to be elucidated. In this study, a survey of 94 normal human adult sera revealed a considerable natural humoral cytotoxicity against human NB cell lines in approximately one-third of the tested sera of both genders. Specific cell killing by these sera was in the range of 40% to 95%. Serum cytotoxicity was dependent on an intact classical pathway of complement. By several lines of evidence, IgM antibodies were identified as the cytotoxic factor in the sera. Further analyses revealed that a 260-kDa protein was recognized by natural IgM of cytotoxic sera in Western blots of NB cell extracts. The antigen was expressed on the surface of seven human NB cell lines but not on human melanoma or other control tumor cell lines derived from kidney, pancreas, colon, bone, skeletal muscle, lymphatic system, and bone marrow. Furthermore, no reactivity was observed with normal human fibroblasts, melanocytes, and epidermal keratinocytes. The antigen was expressed in vivo as detected by immunohistochemistry in both the tumor of a NB patient and NB tumors established in nude rats from human NB cell lines. Most interestingly, the IgM anti-NB antibody was absent from the sera of 11 human NB patients with active disease. The anti-NB IgM also could not be detected in tumor tissue obtained from a NB patient. Collectively, our data suggest the existence of a natural humoral immunological tumor defense mechanism, which could account for the in vivo phenomenon of spontaneous NB tumor regression.
Resumo:
Hemopoietic stem cells are a distinct population of cells that can differentiate into multilineages of hemopoietic cells and have long-term repopulation capability. A few membrane-bound molecules have been found to be preferentially, but not uniquely, present on the surface of these primitive cells. We report here the identification of a unique 105-kDa glycoprotein on the surface of hemopoietic stem cell line BL3. This molecule, recognized by the absorbed antiserum, is not present on the surface of myeloid progenitors 32D and FDC-P1 cells, EL4 T cells, and NIH 3T3 fibroblasts. This antiserum can also be used to block the proliferation of BL3 cells even in the presence of mitogen-stimulated spleen cell conditioned medium, which is known to have a stimulating activity on BL3 cells. It can also inhibit development of in vitro, fetal liver cell-derived multilineage colonies, but not other types of colonies, and of in vivo bone marrow cell-derived colony-forming unit spleen foci. These data suggest that gp105 plays an important role in hemopoietic stem cell differentiation.
Resumo:
A PCR-based assay has been devised for the detection and semiquantitation of cells originating from a few donor hematopoietic stem cells (HSCs) in a background of recipient cells. Upon sequencing a segment of murine Y chromosome contained in the plasmid pY2, oligonucleotide primers were designed for specific amplification of the Y chromosome-restricted segment. The HSCs were isolated from the bone marrow of mice on day 4 following a single i.v. injection of 5-fluorouracil and were readily distinguished from other bone marrow elements by the characteristics of low density, absence of lineage-specific surface markers, lack of expression of transferrin receptor, and a high expression of major histocompatibility complex class I antigen. Injection of as few as four such HSCs was shown to produce donor-derived cells (including lymphoid cells) for at least 8 months after transplantation into syngeneic female recipients. Retransplantation, employing 10(6) bone marrow cells from the initial recipients, also yielded clear evidence of repopulation with detectable levels of male donor cells. On statistical grounds, it is clear that long-term repopulation in vivo may result from even a single HSC having the characteristics defined herein.