964 resultados para Wiener-Hopf equations.
Resumo:
In this paper we study codimension-one Hopf bifurcation from symmetric equilibrium points in reversible equivariant vector fields. Such bifurcations are characterized by a doubly degenerate pair of purely imaginary eigenvalues of the linearization of the vector field at the equilibrium point. The eigenvalue movements near such a degeneracy typically follow one of three scenarios: splitting (from two pairs of imaginary eigenvalues to a quadruplet on the complex plane), passing (on the imaginary axis), or crossing (a quadruplet crossing the imaginary axis). We give a complete description of the behaviour of reversible periodic orbits in the vicinity of such a bifurcation point. For non-reversible periodic solutions. in the case of Hopf bifurcation with crossing eigenvalues. we obtain a generalization of the equivariant Hopf Theorem.
Resumo:
Starting from the two-particle Bethe-Salpeter equation in the ladder approximation and integrating over the time component of momentum, we rederive three-dimensional scattering integral equations satisfying constraints of relativistic unitarity and convariance, first derived by Weinberg and by Blankenbecler and Sugar. These two-particle equations are shown to be related by a transformation of variables. Hence we show how to perform and relate identical dynamical calculation using these two equations. Similarly, starting from the Bethe-Salpeter-Faddeev equation for the three-particle system and integrating over the time component of momentum, we derive several three-dimensional three-particle scattering equations satisfying constraints of relativistic unitarity and convariance. We relate two of these three-particle equations by a transformation of variables as in the two-particle case. The three-particle equations we derive are very practical and suitable for performing relativistic scattering calculations. (C) 1994 Academic Press, Inc.
Resumo:
We derive a set of relativistic three-particle scattering equations in the three-particle c.m. frame employing a relativistic three-particle propagator suggested long ago by Ahmadzadeh and Tjon in the c.m. frame of a two-particle subsystem. We make the coordinate transformation of this propagator from the c.m. frame of the two-particle subsystem to the three-particle c.m. frame. We also point out that some numerical applications of the Ahmadzadeh and Tjon propagator to the three-nucleon problem use unnecessary nonrelativistic approximations which do not simplify the computational task, but violate constraints of relativistic unitarity and/or covariance.
Resumo:
The Schwinger-Dyson equations for the nucleon and meson propagators are solved self-consistently in an approximation that goes beyond the Hartree-Fock approximation. The traditional approach consists in solving the nucleon Schwinger-Dyson equation with bare meson propagators and bare meson-nucleon vertices; the corrections to the meson propagators are calculated using the bare nucleon propagator and bare nucleon-meson vertices. It is known that such an approximation scheme produces the appearance of ghost poles in the propagators. In this paper the coupled system of Schwinger-Dyson equations for the nucleon and the meson propagators are solved self-consistently including vertex corrections. The interplay of self-consistency and vertex corrections on the ghosts problem is investigated. It is found that the self-consistency does not affect significantly the spectral properties of the propagators. In particular, it does not affect the appearance of the ghost poles in the propagators.
Resumo:
In this paper we discuss the existence of compact attractor for the abstract semilinear evolution equation u = Au + f (t, u); the results are applied to damped partial differential equations of hyperbolic type. Our approach is a combination of Liapunov method with the theory of alpha-contractions.
Resumo:
Dichotomic maps are considered by means of the stability and asymptotic stability of the null solution of a class of differential equations with argument [t] via associated discrete equations, where [.] designates the greatest integer function.
Resumo:
This paper describes a methodology for solving efficiently the sparse network equations on multiprocessor computers. The methodology is based on the matrix inverse factors (W-matrix) approach to the direct solution phase of A(x) = b systems. A partitioning scheme of W-matrix , based on the leaf-nodes of the factorization path tree, is proposed. The methodology allows the performance of all the updating operations on vector b in parallel, within each partition, using a row-oriented processing. The approach takes advantage of the processing power of the individual processors. Performance results are presented and discussed.
Resumo:
By using the long-wavelength approximation, a system of coupled evolution equations for the bulk velocity and the surface perturbations of a Benard-Marangoni system is obtained. It includes nonlinearity, dispersion, and dissipation, and it can be interpreted as a dissipative generalization of the usual Boussinesq system of equations. As a particular case, a strictly dissipative version of the Boussinesq system is obtained.
Resumo:
We study the dynamics of a class of reversible vector fields having eigenvalues (0, alphai, -alphai) around their symmetric equilibria. We give a complete list of all normal forms for such vector fields, their versal unfoldings, and the corresponding bifurcation diagrams of the codimensional-one case. We also obtain some important conclusions on the existence of homoclinic and heteroclinic orbits, invariant tori and symmetric periodic orbits.