944 resultados para Waste water treatment plants
Resumo:
The Rebuild Iowa Infrastructure and Transportation Task Force is acutely aware of the critical role infrastructure plays in Iowa’s communities, the lives of the residents, and the economic well-being of the state. With encouragement to the Rebuild Iowa Advisory Commission (RIAC) for its consideration of great need for infrastructure and transportation repairs, the Task Force provides its assessment and recommendations. As the RIAC fulfills its obligations to guide the recovery and reconstruction in Iowa, infrastructure and transportation must be recognized for its impact on all Iowans. The tornadoes, storms, and floods were devastating to infrastructure and transportation systems across the state. The damage did not distinguish between privately-owned and public assets. The significance of the damage emerges further with the magnitude of the damage estimates. Infrastructure includes components that some might initially overlook, such as communication systems, landfills, and water treatment. The miles of damaged roads and bridges are more evident to many Iowans. Given the reliance on infrastructure systems, many repairs are already underway, though gaps have emerged in the funding for repairs to certain infrastructure systems.
Resumo:
The plastron theory was tested in adults of Neochetina eichhorniae Warner, 1970, through the analysis of the structure that coats these insects' integument and also through submersion laboratorial experiments. The tegument processes were recognized in three types: agglutinated scales with large perforations, plumose scales of varied sizes and shapes, and hairs. The experiments were carried out on 264 adult individuals which were kept submerged at different time intervals (n = 11) and in two types of treatment, natural non-aerated water and previously boiled water, with four repetitions for each treatment. The tests showed a maximum mortality after 24 hours of immersion in the previously boiled water treatment. The survival of the adults was negative and significantly correlated with the types of treatment employed and within the different time intervals. The values of oxygen dissolved in water (mg/l) differed significantly within the types of treatment employed. They were positively correlated with the survival of the adults in the two types of treatment, although more markedly in the treatment with previously boiled water. The mortality of adults after 24 hours of submersion in the treatment with previously boiled water may be associated with the physical-chemical conditions of the non-tested water in this study, such as low surface tension and concentration of solutes. These results suggest plastron functionality in the adults of this species.
Resumo:
Amplified ribosomal DNA restriction analysis (ARDRA) is a simple method based on restriction endonuclease digestion of the amplified bacterial 16S rDNA. In this study we have evaluated the suitability of this method to detect differences in activated sludge bacterial communities fed on domestic or industrial wastewater, and subject to different operational conditions. The ability of ARDRA to detect these differences has been tested in modified Ludzack-Ettinger (MLE) configurations. Samples from three activated sludge wastewater treatment plants (WWTPs) with the MLE configuration were collected for both oxic and anoxic reactors, and ARDRA patterns using double enzyme digestions AluI+MspI were obtained. A matrix of Dice similarity coefficients was calculated and used to compare these restriction patterns. Differences in the community structure due to influent characteristics and temperature could be observed, but not between the oxic and anoxic reactors of each of the three MLE configurations. Other possible applications of ARDRA for detecting and monitoring changes in activated sludge systems are also discussed
Resumo:
Traditional culture-dependent methods to quantify and identify airborne microorganisms are limited by factors such as short-duration sampling times and inability to count nonculturableor non-viable bacteria. Consequently, the quantitative assessment of bioaerosols is often underestimated. Use of the real-time quantitative polymerase chain reaction (Q-PCR) to quantify bacteria in environmental samples presents an alternative method, which should overcome this problem. The aim of this study was to evaluate the performance of a real-time Q-PCR assay as a simple and reliable way to quantify the airborne bacterial load within poultry houses and sewage treatment plants, in comparison with epifluorescencemicroscopy and culture-dependent methods. The estimates of bacterial load that we obtained from real-time PCR and epifluorescence methods, are comparable, however, our analysis of sewage treatment plants indicate these methods give values 270-290 fold greater than those obtained by the ''impaction on nutrient agar'' method. The culture-dependent method of air impaction on nutrient agar was also inadequate in poultry houses, as was the impinger-culture method, which gave a bacterial load estimate 32-fold lower than obtained by Q-PCR. Real-time quantitative PCR thus proves to be a reliable, discerning, and simple method that could be used to estimate airborne bacterial load in a broad variety of other environments expected to carry high numbers of airborne bacteria. [Authors]
Resumo:
The Rebuild Iowa Infrastructure and Transportation Task Force is acutely aware of the critical role infrastructure plays in Iowa’s communities, the lives of the residents, and the economic well-being of the state. With encouragement to the Rebuild Iowa Advisory Commission (RIAC) for its consideration of great need for infrastructure and transportation repairs, the Task Force provides its assessment and recommendations. As the RIAC fulfills its obligations to guide the recovery and reconstruction in Iowa, infrastructure and transportation must be recognized for its impact on all Iowans. The tornadoes, storms, and floods were devastating to infrastructure and transportation systems across the state. The damage did not distinguish between privately-owned and public assets. The significance of the damage emerges further with the magnitude of the damage estimates. Infrastructure includes components that some might initially overlook, such as communication systems, landfills, and water treatment. The miles of damaged roads and bridges are more evident to many Iowans. Given the reliance on infrastructure systems, many repairs are already underway, though gaps have emerged in the funding for repairs to certain infrastructure systems. Supplement Information to the August 2008
Resumo:
The objective of this work was to determine the critical irrigation time for common bean (Phaseolus vulgaris L. cv. Carioca) using infrared thermometry. Five treatments were analyzed. Canopy temperature differences between plants and a well-watered control about 1, 2, 3, 4, and 5±0.5ºC were tested. Physiological variables and plant growth were analyzed to establish the best time to irrigate. There was a significant linear correlation between the index and stomatal resistance, transpiration rate, and leaf water potential. Although significant linear correlation between the index and mean values of total dry matter, absolute growth rate, and leaf area index was found, no correlation was found with other growth index like relative growth rate, net assimilation rate, and leaf area ratio. Plants irrigated when their canopy temperature was 3±0.5ºC above the control had their relative growth rate mean value increased up to 59.7%, yielding 2,260.2 kg ha-1, with a reduction of 38.0% in the amount of water used. Plants irrigated when their canopy temperature was 4±0.5ºC yielded 1,907.6 kg ha-1, although their relative growth rate mean value was 4.0% below the control. These results show that the best moment to irrigate common bean is when their canopy temperature is between 3ºC and 4±0.5ºC above the control.
Proyecto de ejecución de zona lúdica de verano formada por piscinas, jacuzzi y edificio de servicios
Resumo:
Este trabajo final de carrera se basa en la redacción de un proyecto de ejecución de una zona lúdica situada en el interior del recinto de un camping, la cual estará formada por una piscina de grandes dimensiones formada por tres vasos de tipo desbordante, una piscina de tipo infantil, un jacuzzi y finalmente un edificio de servicios complementarios (bar, aseos y enfermería). La piscina grande estará formada por tres vasos donde el agua va deslizándose de uno a otro hasta ser recogida por un depósito de compensación desde donde se realizará la filtración y tratamiento antes de ser devuelta al piscina de nuevo. La instalación está también preparada para ser utilizado cada vaso como una piscina individual, recogiendo el agua por los rebosaderos laterales y conduciéndola al mismo vaso de compensación. El tratamiento del agua se realizará de forma física a través de la filtración mediante filtros de arena y de forma química analizando la cantidad de cloro residual y el nivel de PH y posteriormente añadiendo de forma automática las cantidades de cloro y corrector de PH adecuados mediante bombas dosificadoras de precisión. La piscina infantil es de pequeñas dimensiones y esta preparada para ser utilizada por niños de muy corta edad. Se diferencia de la piscina grande en el sistema de recirculación de agua (en este casos e utilizarán skimmers) y en el tratamiento posterior, ya que se utilizará el sistema de hidrólisis salina para su desinfección en lugar de añadir directamente cloro. Este sistema de tratamiento del agua no es tan agresivo como el tradicional, siendo cada vez mas utilizado en piscinas de mediano y pequeño tamaño. El jacuzzi es de grandes dimensiones, disponiendo de su propio sistema de tratamiento de agua, utilizando el sistema de hidrólisis salina como en el caso de la piscina infantil. El edificio de servicios dispone de zonas de bar, enfermería y aseos. Se ha descrito desde la estructura a las instalaciones, justificando las conclusiones a través de los cálculos correspondientes, bien de forma manual, bien utilizando diverso software especializado.
Resumo:
Twelve-Mile Lake is an 800-acre man-made lake in central Union County. The watershed has 13,964 land acres that are used by farmers for row crops and pasture. This lake is used as a water supply source for the City of Creston and the Southern Iowa Rural Water Association. In total approximately 40,000 people are affected by this project. Developed over 20 years ago, the lake and fishery was renovated and restocked and much of the shoreline was riprapped about six years ago. During its history, extensive watershed efforts have been ongoing. However, as farmland for cropland has become more valuable and demand has increased, hilly land once used for dairy farming, grazing, and CRP has been put into row crop production. Consequently, sediment loss has become an increasing issue for farmers, conservation professionals, and the Creston Waterworks Department, which owns the water treatment facility at the lake. In 2011, the Creston Water Board received a WIRB grant to implement a sedimentation structure at the north end of the main channel flowing into the lake. The WIRB funds were used for land acquisition, with the IDNR actually constructing the facility. This report depicts work performed as part of the WIRB project.
Resumo:
Little River Lake watershed is a 13,305 acre subwatershed of Little River. The 788 acre lake was listed as a 303d impaired water body in 2008 due to elevated turbidity and algae levels. The Decatur SWCD has prioritized water quality protection efforts within the Little River Lake watershed because 1) portions of this watershed has been identified as the primary contributor of sediment and nutrients to Little River Lake, which provides an essential source of drinking water for Decatur County and the Southern Iowa Rural Water Association; 2) the watershed provides exemplary education and project interpretation opportunities due to its proximity to Little River Lake Recreation Area, and 3) by using targeted and proven soil conservation practices to address water quality deficiencies the probability of successfully attenuating soil erosion and ameliorating water quality impairments is enhanced. The specific goals of this proposal are to: 1. reduce annual sediment, and phosphorous delivery to the lake by 11,280 tons and 14,664 lbs., respectively, via applications of conservation practices on targeted agricultural land; 2. delist the lake as an EPA 303d impaired water body via water quality enhancement; 3. obtain a “Full Support” status for the lake’s aquatic life and recreational use; 4. reduce potable water treatment costs (minimum 50% cost reduction) associated with high suspended solid levels; and 5. restore a viable sport-fish population, thereby bolstering tourism and the economy. To achieve timely project implementation the Decatur SWCD has cooperated with the IDNR Watershed Improvement Section, Fisheries Bureau, and IDALS-DSC to assess extant water quality and watershed conditions, coalesced a diverse team of committed partners and secured matching funding from multiple sources.
Resumo:
With the Saylor Creek Watershed Improvement Project, Iowa Heartland RC&D and other area stakeholders have an opportunity to display how "best management practices" (BMPs) can reduce storm water runoff and improve the quality of that runoff in an urban setting. Conservation design is a uew approach to storm water management that addresses the negative impacts of storm water runoff and turns them into a positive. The master plan for the Prairie Trail development surrounding the watershed project will incorporate bioretention cells, bioswales, buffer strips, rain gardens, as well as native plant landscaping to slow storm water runoff and naturally clean sediment out of the water before it reaches Saylor Creek. In addition to conservation design elements, the project will utilize storm water detention ponds and creek bed restoration to develop a complete storm water "treatment train" system within Prairie Trail. The extensive use of conservation storm water management for Prairie Trail is unique for urban development in Iowa.
Resumo:
Twelve Mile Creek Lake is a 660 acre, Significant Publicly Owned Lake with a watershed of 14,820 acres for a ratio of 21:3. The watershed is predominately privately owned agricultural land that originates in Adair County and drains into the lake which serves as the primary source water for the City of Creston, Union County and the seven counties served by the Southern Iowa Rural Water Association. In recent years, frequent algae blooms and recurrent spikes in suspended solid concentrations have been inflating water treatment expenses for the Creston Municipal Utilities (CMU). Declining trends in water quality spurred CMU to enlist the Union Soil and Water Conservation District (SWCD) to assist in evaluating watershed conditions for potential upland improvements. Significant gully erosion issues that had been previously underestimated were discovered during this watershed assessment process. Newly acquired LiDAR elevation data readily revealed this concern which was previously obscured from view by the dense tree canopy. A Watershed Development and Planning Assistance Grant Application was approved and funded by the Iowa Department of Ag and Land Stewardship- Division of Soil Conservation. Throughout the planning process, project partners innovatively evaluated and prioritized a number of resource concerns throughout the watershed. The implementation plan presented will thwart these threats which left unaided will continue to diminish the overall health of the system, reduce the appeal of the lake to recreational users, and contribute to higher water treatment costs.
Resumo:
RESUME : Dans de nombreux environnements professionnels, des travailleurs sont exposés à des bioaérosols, que ce soit des bactéries, champignons, virus ou fragments de microorganismes. Ces bioaérosols peuvent être responsables de maladies infectieuses (p.ex. légionellose), ou de maladies non infectieuses (touchant principalement les voies respiratoires). Cependant, pour une majorité des bioaérosols, les relations entre une exposition à une certaine dose et les effets sur la santé humaine sont peu connues. Ce manque de connaissances étant dû principalement à une absence de méthodes adéquates permettant de quantifier cette exposition. La real-time quantitative PCR (Q-PCR) est un outil basé sur la quantification du DNA dont le potentiel de quantification des bioaérosols dans des environnements professionnels n'a pas été exploré. Le but de ce travail est de développer une méthode de Q-PCR permettant de quantifier des bioaérosols - en particulier des bactéries - et d'appliquer ces techniques pour des mesures préventives sur les lieux de travail. Dans ce travail, la Q-PCR a été appliquée à 1a quantification de pathogènes, de groupes taxonomiques spécifiques et de la charge bactérienne totale dans des environnements de travail, stations d'épuration et élevages industriels de volailles. Nous avons montré que la Q-PCR : 1) est capable de quantifier des pathogènes difficilement cultivables si ceux-ci sont présents en concentration importante, 2) a le potentiel pour être un outil performant dans l'étude des communautés bactériennes présentes dans l'air d'environnements professionnels, 3) est aussi performante que le comptage total des bactéries par DAPI pour quantifier 1a charge bactérienne totale et est donc une alternative prometteuse aux techniques culture-dépendantes. La Q-PCR pourrait être utilisée afin d'établir des relations doses-réponses pour la charge bactérienne ; soit dans des populations de travailleurs hautement exposés (p.ex. les éleveurs de volailles), soit en exposant des cellules à des concentrations de bioaérosols mesurées par Q-PCR. ABSTRACT : Many workers are exposed to bioaerosols such as bacteria, fungi, viruses or fragments of microorganisms. These bioaerosols can be responsible of infectious (e.g. legionellosis) or non infectious diseases (mainly respiratory symptoms). However, for a majority of them, the relationship between exposure and effects on human health is not clearly established. This is mainly due to the lack of valid quantitative assessment methods. Real-time quantitative PCR (Q-PCR) is a tool based on the quantification of DNA, of which the potential for the quantification of bioaerosols in work environments has not yet been explored. The aim of this work was to develop a Q-PCR method permitting to quantify bioaerosols -mainly bacteria and to apply those techniques in occupational environments. In this work, Q-PCR was applied to the quantification of pathogens, of specific taxonomic groups and of the total bacterial load in two different occupational settings, namely wastewater treatment plants and poultry houses. We showed that Q-PCR : 1) is capable of quantifying difficult to cultivate pathogens; when they are present at high concentrations, 2) has the potential to be a useful tool for studying bacterial communities in the air of work environments, 3) is as efficient as epifluorescence for the quantification of total bacterial load, and is a promising alternative to the culture-dependent methods. Q-PCR could be used to establish doses-responses relationships for bacterial load, either in populations of highly exposed workers such as poultry farmers, or by exposing cells to concentrations of bioaerosols quantified with Q-PCR.
Resumo:
Concerns have increased regarding the detection of endocrine-disrupting compounds in the effluents of sewage treatment plants (STPs). These compounds are able to disrupt normal function of the endocrine system of living organisms even at trace concentrations. Natural and synthetic steroid estrogens (SEs) are believed to be responsible for the majority of the endocrine-disrupting effects. Municipal sewage, the main source of SEs in the environment, is a complex mixture of a wide range of pollutants at concentrations much higher than those of SEs. Low concentrations of SEs in the presence of copollutants thus make their removal problematic. The main objectives of the present work were to study the potential of photocatalytic oxidation (PCO) to effectively treat SE-containing aqueous solutions and to identify the optimum conditions for such treatment. The results showed that SEs can be effectively degraded photocatalytically. Due to the adsorption properties of SEs on the TiO2 photocatalyst surface alkaline medium was found to be beneficial for SE oxidation despite the presence of co-pollutants in concentrations characteristic for the sanitary fraction of municipal sewage. The potential of PCO to selectively oxidise SEs was examined in the presence of copollutants of the sanitary fraction of sewage - urea, saccharose and human urine. The impact of ethanol, often used as a solvent in the preparation of SE stock solutions, was also studied and the results indicated the need to use organic solvent-free solutions for the study of SE behaviour. Photocatalytic oxidation of SEs appeared to be indifferent towards the presence of urea in concentrations commonly found in domestic sewage. The effect of other co-pollutants under consideration was far weaker than could be expected from their concentrations, which are from one hundred to a few thousands times higher than those of the SEs. Although higher concentrations can dramatically slow down the PCO of SEs, realistic concentrations of co-pollutants characteristic for the sanitary fraction of domestic sewage allowed selective removal of SEs. This indicates the potential of PCO to be a selective oxidation method for SE removal from the separate sanitary fraction of municipal sewage.
Resumo:
Uimaveden klooridesinfioinnissa syntyy sivutuotteena haihtuvia ja haitallisia halogeeniyhdisteitä, kuten trihalometaaneja ja triklooriamiinia, jotka voivat heikentää allas-tilan sisäilman laatua merkittävästi. Tämän tutkimuksen tavoitteena oli kartoittaa näiden desinfioinnin sivutuotteiden pitoisuuksia suomalaisissa uimahalleissa sekä selvittää epäpuhtauksien kulkeutumista allastiloissa. Lisäksi pyrittiin löytämään merkittävimmät veden laatu- ja käsittelyparametrit sekä ilmanvaihtotekniset tekijät, jotka vaikuttavat vedestä haihtuvien epäpuhtauksien pitoisuuksiin hallitiloissa. Mittaukset tehtiin kymmenessä eri puolilla Suomea sijaitsevassa uimahallissa. Mittausten perusteella havaittiin, että allastilojen kloroformipitoisuudet vaihtelivat välillä 8,9-84,0 ¿g/m3. Terapia-allasostoilta mitatut pitoisuudet olivat pääallastiloista mitattuja pitoisuuksia suurempia ja aamulla mitattu pitoisuus alhaisempi kuin illalla mitattu. Lisäksi ilmastoiduista valvomoista mitatut pitoisuudet olivat merkittävästi allastilojen pitoisuuksia pienempiä. Triklooriamiininäytteistä suurin osa oli alle määritysrajan. Sisäilman kloroformipitoisuuden havaittiin korreloivan veden lämpötilan sekä ilman kosteuden kanssa. Triklooriamiinille tilastollista analyysiä ei voitu tehdä mm. määritys-rajan alle jääneiden näytteiden suuren osuuden vuoksi. Teknisten kyselyiden ja ilmanvaihtomittausten perusteella todettiin, että uimahallien ilmanvaihto toimii lämmitystarpeen vuoksi sekoittavana ja epäpuhtauksien leviämistä allastilassa ei voida käytännössä katsoen estää. Ilman virtausnopeudet pääaltaiden reunoilla olivat pieniä ja ilman virtauskenttien ei todettu vaikuttavan epäpuhtauksien kulkeutumiseen allastiloissa. Mittauskohteiden vähyydestä ja vedenkäsittelyn hallikohtaisista erityispiirteistä johtuen luotettavia johtopäätöksiä vedenkäsittelymenetelmien vaikutuksesta allasveden ja allastilan ilman laatuun ei pystytty tekemään.
Resumo:
Despite using modern microbiological diagnostic approaches, the aetiological agents of pneumonia remain unidentified in about 50% of cases. Some bacteria that grow poorly or not at all in axenic media used in routine clinical bacteriology laboratory but which can develop inside amoebae may be the agents of these lower respiratory tract infections (RTIs) of unexplained aetiology. Such amoebae-resisting bacteria, which coevolved with amoebae to resist their microbicidal machinery, may have developed virulence traits that help them survive within human macrophages, i.e. the first line of innate immune defence in the lung. We review here the current evidence for the emerging pathogenic role of various amoebae-resisting microorganisms as agents of RTIs in humans. Specifically, we discuss the emerging pathogenic roles of Legionella-like amoebal pathogens, novel Chlamydiae (Parachlamydia acanthamoebae, Simkania negevensis), waterborne mycobacteria and Bradyrhizobiaceae (Bosea and Afipia spp.).