935 resultados para Visual Object Identification Task
Resumo:
A educação na arte e pela arte confere a todos os seus intervenientes a estimulação da sua criatividade e da sua consciência cultural, proporcionando meios para se exprimirem e participarem ativamente no mundo que nos rodeia. A integração das tecnologias de informação e comunicação no processo de ensino-aprendizagem veio alargar o papel que a arte pode desempenhar neste processo, promovendo novas formas de aprender, de ensinar e de pensar. Assim, a utilização de ambientes virtuais em contexto educativo tem revelado um enorme potencial, sobretudo ao nível da comunicação e da interação entre alunos e obras de arte. Neste sentido, considerou-se importante desenvolver um estudo de caso em contexto de sala de aula da Educação Visual, promovendo uma aprendizagem baseada na articulação entre a observação, interpretação e análise da obra de arte e o museu virtual. Assim o principal objetivo deste estudo foi avaliar as potencialidades do Google Art Project, enquanto objeto de aprendizagem, na promoção da aprendizagem na área da literacia em artes. Para além disso, procurámos ainda avaliar se a utilização de ferramentas multimédia como o referido Google Art Project e o Quadro Interativo, constituem fatores de motivação na aprendizagem da disciplina de Educação Visual. Do ponto de vista metodológico desenvolvemos uma estratégia baseada na investigação-ação. Procurámos, por um lado, descobrir e compreender o significado de uma realidade vivida por um grupo de alunos e, por outro lado, refletir sobre a prática educativa com o intuito de a melhorar e transformar. Este estudo envolveu cinco turmas do sexto ano do ensino público. Para a recolha de dados utilizámos técnicas baseadas na conversação e na observação, no questionário e nas notas de campo. Os resultados deste estudo revelam que as ferramentas tecnológicas utilizadas podem efetivamente contribuir para a promoção da aprendizagem dos alunos na área da Educação Visual, mais concretamente ao nível do domínio da literacia artística, da representação e da interpretação visual.
Resumo:
According to a traditional rationalist proposal, it is possible to attain knowledge of certain necessary truths by means of insight—an epistemic mental act that combines the 'presentational' character of perception with the a priori status usually reserved for discursive reasoning. In this dissertation, I defend the insight proposal in relation to a specific subject matter: elementary Euclidean plane geometry, as set out in Book I of Euclid's Elements. In particular, I argue that visualizations and visual experiences of diagrams allow human subjects to grasp truths of geometry by means of visual insight. In the first two chapters, I provide an initial defense of the geometrical insight proposal, drawing on a novel interpretation of Plato's Meno to motivate the view and to reply to some objections. In the remaining three chapters, I provide an account of the psychological underpinnings of geometrical insight, a task that requires considering the psychology of visual imagery alongside the details of Euclid's geometrical system. One important challenge is to explain how basic features of human visual representations can serve to ground our intuitive grasp of Euclid's postulates and other initial assumptions. A second challenge is to explain how we are able to grasp general theorems by considering diagrams that depict only special cases. I argue that both of these challenges can be met by an account that regards geometrical insight as based in visual experiences involving the combined deployment of two varieties of 'dynamic' visual imagery: one that allows the subject to visually rehearse spatial transformations of a figure's parts, and another that allows the subject to entertain alternative ways of structurally integrating the figure as a whole. It is the interplay between these two forms of dynamic imagery that enables a visual experience of a diagram, suitably animated in visual imagination, to justify belief in the propositions of Euclid’s geometry. The upshot is a novel dynamic imagery account that explains how intuitive knowledge of elementary Euclidean plane geometry can be understood as grounded in visual insight.
Resumo:
Dissertação de Doutoramento para obtenção do grau de Doutor em Design, dissertação apresentada na Universidade de Lisboa - Faculdade de Arquitetura.
Resumo:
In this article we describe a semantic localization dataset for indoor environments named ViDRILO. The dataset provides five sequences of frames acquired with a mobile robot in two similar office buildings under different lighting conditions. Each frame consists of a point cloud representation of the scene and a perspective image. The frames in the dataset are annotated with the semantic category of the scene, but also with the presence or absence of a list of predefined objects appearing in the scene. In addition to the frames and annotations, the dataset is distributed with a set of tools for its use in both place classification and object recognition tasks. The large number of labeled frames in conjunction with the annotation scheme make this dataset different from existing ones. The ViDRILO dataset is released for use as a benchmark for different problems such as multimodal place classification and object recognition, 3D reconstruction or point cloud data compression.
Resumo:
Ornamental fish may be severely affected by a stressful environment. Stressors impair the immune response, reproduction and growth rate; thus, the identification of possible stressors will aid to improve the overall quality of ornamental fish. The aim of this study was to determine whole-body cortisol of adult zebrafish, Danio rerio, following visual or direct contact with a predator species. Zebrafish were distributed in three groups: the first group, which consisted of zebrafish reared completely isolated of the predator, was considered the negative control; the second group, in which the predator, Parachromis managuensis was stocked together with zebrafish, was considered the positive control; the third group consisted of zebrafish stocked in a glass aquarium, with direct visual contact with the predator. The mean whole-body cortisol concentration in zebrafish from the negative control was 6.78 +/- 1.12 ng g(-1), a concentration statistically lower than that found in zebrafish having visual contact with the predator (9.26 +/- 0.88 ng g(-1)) which, in turn, was statistically lower than the mean whole-body cortisol of the positive control group (12.35 +/- 1.59 ng g(-1)). The higher whole-body cortisol concentration found in fish from the positive control can be attributed to the detection, by the zebrafish, of relevant risk situations that may involve a combination of chemical, olfactory and visual cues. One of the functions of elevated cortisol is to mobilize energy from body resources to cope with stress. The elevation of whole-body cortisol in fish subjected to visual contact with the predator involves only the visual cue in the recognition of predation risk. We hypothesized that the zebrafish could recognize predator characteristics in P managuensis, such as length, shape, color and behavior. Nonetheless, the elevation of whole-body cortisol in zebrafish suggested that the visual contact of the predator may elicit a stress response in prey fish. This assertion has a strong practical application concerning the species distribution in ornamental fish markets in which prey species should not be allowed to see predator species. Minimizing visual contact between prey and predator fish may improve the quality, viability and welfare of small fish in ornamental fish markets. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Psicologia, Departamento de Processos Psicológicos Básicos, Programa de Pós-Graduação em Ciências do Comportamento, 2016.
Resumo:
As users continually request additional functionality, software systems will continue to grow in their complexity, as well as in their susceptibility to failures. Particularly for sensitive systems requiring higher levels of reliability, faulty system modules may increase development and maintenance cost. Hence, identifying them early would support the development of reliable systems through improved scheduling and quality control. Research effort to predict software modules likely to contain faults, as a consequence, has been substantial. Although a wide range of fault prediction models have been proposed, we remain far from having reliable tools that can be widely applied to real industrial systems. For projects with known fault histories, numerous research studies show that statistical models can provide reasonable estimates at predicting faulty modules using software metrics. However, as context-specific metrics differ from project to project, the task of predicting across projects is difficult to achieve. Prediction models obtained from one project experience are ineffective in their ability to predict fault-prone modules when applied to other projects. Hence, taking full benefit of the existing work in software development community has been substantially limited. As a step towards solving this problem, in this dissertation we propose a fault prediction approach that exploits existing prediction models, adapting them to improve their ability to predict faulty system modules across different software projects.
Resumo:
In the study of the spatial characteristics of the visual channels, the power spectrum model of visual masking is one of the most widely used. When the task is to detect a signal masked by visual noise, this classical model assumes that the signal and the noise are previously processed by a bank of linear channels and that the power of the signal at threshold is proportional to the power of the noise passing through the visual channel that mediates detection. The model also assumes that this visual channel will have the highest ratio of signal power to noise power at its output. According to this, there are masking conditions where the highest signal-to-noise ratio (SNR) occurs in a channel centered in a spatial frequency different from the spatial frequency of the signal (off-frequency looking). Under these conditions the channel mediating detection could vary with the type of noise used in the masking experiment and this could affect the estimation of the shape and the bandwidth of the visual channels. It is generally believed that notched noise, white noise and double bandpass noise prevent off-frequency looking, and high-pass, low-pass and bandpass noises can promote it independently of the channel's shape. In this study, by means of a procedure that finds the channel that maximizes the SNR at its output, we performed numerical simulations using the power spectrum model to study the characteristics of masking caused by six types of one-dimensional noise (white, high-pass, low-pass, bandpass, notched, and double bandpass) for two types of channel's shape (symmetric and asymmetric). Our simulations confirm that (1) high-pass, low-pass, and bandpass noises do not prevent the off-frequency looking, (2) white noise satisfactorily prevents the off-frequency looking independently of the shape and bandwidth of the visual channel, and interestingly we proved for the first time that (3) notched and double bandpass noises prevent off-frequency looking only when the noise cutoffs around the spatial frequency of the signal match the shape of the visual channel (symmetric or asymmetric) involved in the detection. In order to test the explanatory power of the model with empirical data, we performed six visual masking experiments. We show that this model, with only two free parameters, fits the empirical masking data with high precision. Finally, we provide equations of the power spectrum model for six masking noises used in the simulations and in the experiments.
Resumo:
PURPOSE To investigate the cortical mechanisms that prevent diplopia in intermittent exotropia (X(T)) during binocular alignment (orthotropia). METHODS The authors studied 12 X(T) patients aged 5 to 22 years. Seventy-five percent had functional stereo vision with stereoacuity similar to that of 12 age-matched controls (0.2-3.7 min arc). Identical face images were presented to the two eyes for 400 ms. In one eye, the face was presented at the fovea; in the other, offset along the horizontal axis with up to 12° eccentricity. The task was to indicate whether one or two faces were perceived. RESULTS All X(T) patients showed normal diplopia when the nonfoveal face was presented to nasal hemiretina, though with a slightly larger fusional range than age-matched controls. However, 10 of 12 patients never experienced diplopia when the nonfoveal face was presented to temporal hemiretina (i.e., when the stimulus simulated exodeviation). Patients showed considerable variability when the single image was perceived. Some patients suppressed the temporal stimulus regardless of which eye viewed it, whereas others suppressed a particular eye even when it viewed the foveal stimulus. In two patients, the simulated exodeviation might have triggered a shift from normal to anomalous retinal correspondence. CONCLUSIONS Antidiplopic mechanisms in X(T) can be reliably triggered by purely retinal information during orthotropia, but the nature of these mechanisms varies between patients.
Resumo:
Des interventions ciblant l’amélioration cognitive sont de plus en plus à l’intérêt dans nombreux domaines, y compris la neuropsychologie. Bien qu'il existe de nombreuses méthodes pour maximiser le potentiel cognitif de quelqu’un, ils sont rarement appuyé par la recherche scientifique. D’abord, ce mémoire examine brièvement l'état des interventions d'amélioration cognitives. Il décrit premièrement les faiblesses observées dans ces pratiques et par conséquent il établit un modèle standard contre lequel on pourrait et devrait évaluer les diverses techniques ciblant l'amélioration cognitive. Une étude de recherche est ensuite présenté qui considère un nouvel outil de l'amélioration cognitive, une tâche d’entrainement perceptivo-cognitive : 3-dimensional multiple object tracking (3D-MOT). Il examine les preuves actuelles pour le 3D-MOT auprès du modèle standard proposé. Les résultats de ce projet démontrent de l’augmentation dans les capacités d’attention, de mémoire de travail visuel et de vitesse de traitement d’information. Cette étude représente la première étape dans la démarche vers l’établissement du 3D-MOT comme un outil d’amélioration cognitive.
Resumo:
A evolução do varejo no Brasil, também atribuída ao crescimento econômico das últimas décadas, foi marcada pelo surgimento de novos formatos e estratégias comerciais e por um surpreendente processo de transformação social. Observa-se que a referida transformação social foi seguida pelo aumento do poder aquisitivo das diferentes classes sociais que compõem o cenário econômico. O crescimento econômico, proporcionado pela instituição de políticas econômicas e de inclusão social, fez despontar um nicho de mercado, que até o momento apresentava-se com acesso restrito ao consumo, formado pela classe social de baixa renda. O surgimento de um novo cenário mercadológico constituído por indivíduos pertencentes à classe social de baixa renda e a concorrência saturada dos mercados consolidados despertaram o interesse de muitas empresas em incrementar suas atividades investindo no emergente mercado de consumo. Para consolidar suas atuações em um mercado pouco conhecido, algumas empresas perceberam a necessidade de compatibilizar sua estratégias comerciais e de marketing ao novo perfil e comportamento dos respectivos consumidores. Entretanto, ainda é possível observar que muitas das referidas estratégias são desenvolvidas a partir de mitos acerca das motivações e comportamentos de consumo da classe social de baixa renda e, desta forma, não correspondente ao estilo de vida e formação cultural do referido público alvo. O presente estudo pretende contribuir para o aperfeiçoamento do varejo de baixa renda e, desta forma, apresentar a importância de planejar ações comerciais e de convencimento de consumo coordenadas com estratégias de marketing, notadamente do visual merchandising, adaptadas ao referido público alvo. Para alcançar a proposta deste estudo fez-se necessária a compreensão do estilo de vida do respectivo público alvo através do desenvolvimento de métodos de pesquisa investigativos, para uma análise detalhada e assertiva das respectivas motivações de consumo.
Resumo:
Disruptive colouration is a visual camouflage composed of false edges and boundaries. Many disruptively camouflaged animals feature enhanced edges; light patches are surrounded by a lighter outline and/or a dark patches are surrounded by a darker outline. This camouflage is particularly common in amphibians, reptiles and lepidopterans. We explored the role that this pattern has in creating effective camouflage. In a visual search task utilising an ultra-large display area mimicking search tasks that might be found in nature, edge enhanced disruptive camouflage increases crypsis, even on substrates that do not provide an obvious visual match. Specifically, edge enhanced camouflage is effective on backgrounds both with and without shadows; i.e. this is not solely due to background matching of the dark edge enhancement element with the shadows. Furthermore, when the dark component of the edge enhancement is omitted the camouflage still provided better crypsis than control patterns without edge enhancement. This kind of edge enhancement improved camouflage on all background types. Lastly, we show that edge enhancement can create a perception of multiple surfaces. We conclude that edge enhancement increases the effectiveness of disruptive camouflage through mechanisms that may include the improved disruption of the object outline by implying pictorial relief.
Resumo:
Near-infrared polarimetry observation is a powerful tool to study the central sources at the center of the Milky Way. My aim of this thesis is to analyze the polarized emission present in the central few light years of the Galactic Center region, in particular the non-thermal polarized emission of Sagittarius~A* (Sgr~A*), the electromagnetic manifestation of the super-massive black hole, and the polarized emission of an infrared-excess source in the literature referred to as DSO/G2. This source is in orbit about Sgr~A*. In this thesis I focus onto the Galactic Center observations at $\lambda=2.2~\mu m$ ($K_\mathrm{s}$-band) in polarimetry mode during several epochs from 2004 to 2012. The near-infrared polarized observations have been carried out using the adaptive optics instrument NAOS/CONICA and Wollaston prism at the Very Large Telescope of ESO (European Southern Observatory). Linear polarization at 2.2 $\mu m$, its flux statistics and time variation, can be used to constrain the physical conditions of the accretion process onto the central super-massive black hole. I present a statistical analysis of polarized $K_\mathrm{s}$-band emission from Sgr~A* and investigate the most comprehensive sample of near-infrared polarimetric light curves of this source up to now. I find several polarized flux excursions during the years and obtain an exponent of about 4 for the power-law fitted to polarized flux density distribution of fluxes above 5~mJy. Therefore, this distribution is closely linked to the single state power-law distribution of the total $K_\mathrm{s}$-band flux densities reported earlier by us. I find polarization degrees of the order of 20\%$\pm$10\% and a preferred polarization angle of $13^o\pm15^o$. Based on simulations of polarimetric measurements given the observed flux density and its uncertainty in orthogonal polarimetry channels, I find that the uncertainties of polarization parameters under a total flux density of $\sim 2\,{\mathrm{mJy}}$ are probably dominated by observational uncertainties. At higher flux densities there are intrinsic variations of polarization degree and angle within rather well constrained ranges. Since the emission is most likely due to optically thin synchrotron radiation, the obtained preferred polarization angle is very likely reflecting the intrinsic orientation of the Sgr~A* system i.e. an accretion disk or jet/wind scenario coupled to the super-massive black hole. Our polarization statistics show that Sgr~A* must be a stable system, both in terms of geometry, and the accretion process. I also investigate an infrared-excess source called G2 or Dusty S-cluster Object (DSO) moving on a highly eccentric orbit around the Galaxy's central black hole, Sgr~A*. I use for the first time the near-infrared polarimetric imaging data to determine the nature and the properties of DSO and obtain an improved $K_\mathrm{s}$-band identification of this source in median polarimetry images of different observing years. The source starts to deviate from the stellar confusion in 2008 data and it does not show a flux density variability based on our data set. Furthermore, I measure the polarization degree and angle of this source and conclude based on the simulations on polarization parameters that it is an intrinsically polarized source with a varying polarization angle as it approaches Sgr~A* position. I use the interpretation of the DSO polarimetry measurements to assess its possible properties.
Resumo:
People possess different sensory modalities to detect, interpret, and efficiently act upon various events in a complex and dynamic environment (Fetsch, DeAngelis, & Angelaki, 2013). Much empirical work has been done to understand the interplay of modalities (e.g. audio-visual interactions, see Calvert, Spence, & Stein, 2004). On the one hand, integration of multimodal input as a functional principle of the brain enables the versatile and coherent perception of the environment (Lewkowicz & Ghazanfar, 2009). On the other hand, sensory integration does not necessarily mean that input from modalities is always weighted equally (Ernst, 2008). Rather, when two or more modalities are stimulated concurrently, one often finds one modality dominating over another. Study 1 and 2 of the dissertation addressed the developmental trajectory of sensory dominance. In both studies, 6-year-olds, 9-year-olds, and adults were tested in order to examine sensory (audio-visual) dominance across different age groups. In Study 3, sensory dominance was put into an applied context by examining verbal and visual overshadowing effects among 4- to 6-year olds performing a face recognition task. The results of Study 1 and Study 2 support default auditory dominance in young children as proposed by Napolitano and Sloutsky (2004) that persists up to 6 years of age. For 9-year-olds, results on privileged modality processing were inconsistent. Whereas visual dominance was revealed in Study 1, privileged auditory processing was revealed in Study 2. Among adults, a visual dominance was observed in Study 1, which has also been demonstrated in preceding studies (see Spence, Parise, & Chen, 2012). No sensory dominance was revealed in Study 2 for adults. Potential explanations are discussed. Study 3 referred to verbal and visual overshadowing effects in 4- to 6-year-olds. The aim was to examine whether verbalization (i.e., verbally describing a previously seen face), or visualization (i.e., drawing the seen face) might affect later face recognition. No effect of visualization on recognition accuracy was revealed. As opposed to a verbal overshadowing effect, a verbal facilitation effect occurred. Moreover, verbal intelligence was a significant predictor for recognition accuracy in the verbalization group but not in the control group. This suggests that strengthening verbal intelligence in children can pay off in non-verbal domains as well, which might have educational implications.
Resumo:
Des interventions ciblant l’amélioration cognitive sont de plus en plus à l’intérêt dans nombreux domaines, y compris la neuropsychologie. Bien qu'il existe de nombreuses méthodes pour maximiser le potentiel cognitif de quelqu’un, ils sont rarement appuyé par la recherche scientifique. D’abord, ce mémoire examine brièvement l'état des interventions d'amélioration cognitives. Il décrit premièrement les faiblesses observées dans ces pratiques et par conséquent il établit un modèle standard contre lequel on pourrait et devrait évaluer les diverses techniques ciblant l'amélioration cognitive. Une étude de recherche est ensuite présenté qui considère un nouvel outil de l'amélioration cognitive, une tâche d’entrainement perceptivo-cognitive : 3-dimensional multiple object tracking (3D-MOT). Il examine les preuves actuelles pour le 3D-MOT auprès du modèle standard proposé. Les résultats de ce projet démontrent de l’augmentation dans les capacités d’attention, de mémoire de travail visuel et de vitesse de traitement d’information. Cette étude représente la première étape dans la démarche vers l’établissement du 3D-MOT comme un outil d’amélioration cognitive.