932 resultados para User interfaces (Computer systems) -- Evaluation
Resumo:
Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.
Resumo:
Voice communication systems such as Voice-over IP (VoIP), Public Switched Telephone Networks, and Mobile Telephone Networks, are an integral means of human tele-interaction. These systems pose distinctive challenges due to their unique characteristics such as low volume, burstiness and stringent delay/loss requirements across heterogeneous underlying network technologies. Effective quality evaluation methodologies are important for system development and refinement, particularly by adopting user feedback based measurement. Presently, most of the evaluation models are system-centric (Quality of Service or QoS-based), which questioned us to explore a user-centric (Quality of Experience or QoE-based) approach as a step towards the human-centric paradigm of system design. We research an affect-based QoE evaluation framework which attempts to capture users' perception while they are engaged in voice communication. Our modular approach consists of feature extraction from multiple information sources including various affective cues and different classification procedures such as Support Vector Machines (SVM) and k-Nearest Neighbor (kNN). The experimental study is illustrated in depth with detailed analysis of results. The evidences collected provide the potential feasibility of our approach for QoE evaluation and suggest the consideration of human affective attributes in modeling user experience.
Resumo:
Personalized recommender systems aim to assist users in retrieving and accessing interesting items by automatically acquiring user preferences from the historical data and matching items with the preferences. In the last decade, recommendation services have gained great attention due to the problem of information overload. However, despite recent advances of personalization techniques, several critical issues in modern recommender systems have not been well studied. These issues include: (1) understanding the accessing patterns of users (i.e., how to effectively model users' accessing behaviors); (2) understanding the relations between users and other objects (i.e., how to comprehensively assess the complex correlations between users and entities in recommender systems); and (3) understanding the interest change of users (i.e., how to adaptively capture users' preference drift over time). To meet the needs of users in modern recommender systems, it is imperative to provide solutions to address the aforementioned issues and apply the solutions to real-world applications. ^ The major goal of this dissertation is to provide integrated recommendation approaches to tackle the challenges of the current generation of recommender systems. In particular, three user-oriented aspects of recommendation techniques were studied, including understanding accessing patterns, understanding complex relations and understanding temporal dynamics. To this end, we made three research contributions. First, we presented various personalized user profiling algorithms to capture click behaviors of users from both coarse- and fine-grained granularities; second, we proposed graph-based recommendation models to describe the complex correlations in a recommender system; third, we studied temporal recommendation approaches in order to capture the preference changes of users, by considering both long-term and short-term user profiles. In addition, a versatile recommendation framework was proposed, in which the proposed recommendation techniques were seamlessly integrated. Different evaluation criteria were implemented in this framework for evaluating recommendation techniques in real-world recommendation applications. ^ In summary, the frequent changes of user interests and item repository lead to a series of user-centric challenges that are not well addressed in the current generation of recommender systems. My work proposed reasonable solutions to these challenges and provided insights on how to address these challenges using a simple yet effective recommendation framework.^
Resumo:
Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.
Resumo:
Minimum Student Performance Standards in Computer Literacy and Science were passed by the Florida Legislature through the Educational Reform Act of 1983. This act mandated that all Florida high school graduates receive training in computer literacy. Schools and school systems were charged with the task of determining the best methods to deliver this instruction to their students. The scope of this study is to evaluate one school's response to the state of Florida's computer literacy mandate. The study was conducted at Miami Palmetto Senior High School, located in Dade County, Florida. The administration of Miami Palmetto Senior High School chose to develop and implement a new program to comply with the state mandate - integrating computer literacy into the existing biology curriculum. The study evaluated the curriculum to determine if computer literacy could be integrated successfully and meet both the biology and computer literacy objectives. The findings in this study showed that there were no significant differences between biology scores of the students taking the integrated curriculum and those taking a traditional curriculum of biology. Student in the integrated curriculum not only met the biology objectives as well as those in the traditional curriculum, they also successfully completed the intended objectives for computer literacy. Two sets of objectives were successfully completed in the integrated classes in the same amount of time used to complete one set of objectives in the traditional biology classes. Therefore, integrated curriculum was the more efficient means of meeting the intended objectives of both biology and computer literacy.
Resumo:
Esta investigación aborda el consumo que los jóvenes universitarios de España y Brasil realizan de las publicaciones para tabletas. A través del estudio de seis casos –las revistas españolas Don, VisàVis y Quality Sport, y los vespertinos brasileños O Globo a Mais, de Río de Janeiro; Estadão Noite, de Sao Paulo; y Diário do Nordeste Plus, de Fortaleza– se aplica una metodología cualitativa, el test de usabilidad, para detectar qué aspectos ralentizan y entorpecen la navegación en las nuevas generaciones de usuarios de medios móviles. A pesar de la influencia de las revistas impresas en la configuración de las publicaciones para tableta, los datos muestran que el usuario necesita “entrenarse” para conocer unas opciones de interacción a veces poco intuitivas o para las que carece de la madurez visual necesaria. Por ello las publicaciones más sencillas obtienen los mejores resultados de usabilidad.
Resumo:
Aim. The purpose of this study was to develop and evaluate a computer-based, dietary, and physical activity self-management program for people recently diagnosed with type 2 diabetes.
Methods. The computer-based program was developed in conjunction with the target group and evaluated in a 12-week randomised controlled trial (RCT). Participants were randomised to the intervention (computer-program) or control group (usual care). Primary outcomes were diabetes knowledge and goal setting (ADKnowl questionnaire, Diabetes Obstacles Questionnaire (DOQ)) measured at baseline and week 12. User feedback on the program was obtained via a questionnaire and focus groups. Results. Seventy participants completed the 12-week RCT (32 intervention, 38 control, mean age 59 (SD) years). After completion there was a significant between-group difference in the “knowledge and beliefs scale” of the DOQ. Two-thirds of the intervention group rated the program as either good or very good, 92% would recommend the program to others, and 96% agreed that the information within the program was clear and easy to understand.
Conclusions. The computer-program resulted in a small but statistically significant improvement in diet-related knowledge and user satisfaction was high. With some further development, this computer-based educational tool may be a useful adjunct to diabetes self-management.
Resumo:
In today’s big data world, data is being produced in massive volumes, at great velocity and from a variety of different sources such as mobile devices, sensors, a plethora of small devices hooked to the internet (Internet of Things), social networks, communication networks and many others. Interactive querying and large-scale analytics are being increasingly used to derive value out of this big data. A large portion of this data is being stored and processed in the Cloud due the several advantages provided by the Cloud such as scalability, elasticity, availability, low cost of ownership and the overall economies of scale. There is thus, a growing need for large-scale cloud-based data management systems that can support real-time ingest, storage and processing of large volumes of heterogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics can grow linearly with the time and resources required. Reducing the cost of data analytics in the Cloud thus remains a primary challenge. In my dissertation research, I have focused on building efficient and cost-effective cloud-based data management systems for different application domains that are predominant in cloud computing environments. In the first part of my dissertation, I address the problem of reducing the cost of transactional workloads on relational databases to support database-as-a-service in the Cloud. The primary challenges in supporting such workloads include choosing how to partition the data across a large number of machines, minimizing the number of distributed transactions, providing high data availability, and tolerating failures gracefully. I have designed, built and evaluated SWORD, an end-to-end scalable online transaction processing system, that utilizes workload-aware data placement and replication to minimize the number of distributed transactions that incorporates a suite of novel techniques to significantly reduce the overheads incurred both during the initial placement of data, and during query execution at runtime. In the second part of my dissertation, I focus on sampling-based progressive analytics as a means to reduce the cost of data analytics in the relational domain. Sampling has been traditionally used by data scientists to get progressive answers to complex analytical tasks over large volumes of data. Typically, this involves manually extracting samples of increasing data size (progressive samples) for exploratory querying. This provides the data scientists with user control, repeatable semantics, and result provenance. However, such solutions result in tedious workflows that preclude the reuse of work across samples. On the other hand, existing approximate query processing systems report early results, but do not offer the above benefits for complex ad-hoc queries. I propose a new progressive data-parallel computation framework, NOW!, that provides support for progressive analytics over big data. In particular, NOW! enables progressive relational (SQL) query support in the Cloud using unique progress semantics that allow efficient and deterministic query processing over samples providing meaningful early results and provenance to data scientists. NOW! enables the provision of early results using significantly fewer resources thereby enabling a substantial reduction in the cost incurred during such analytics. Finally, I propose NSCALE, a system for efficient and cost-effective complex analytics on large-scale graph-structured data in the Cloud. The system is based on the key observation that a wide range of complex analysis tasks over graph data require processing and reasoning about a large number of multi-hop neighborhoods or subgraphs in the graph; examples include ego network analysis, motif counting in biological networks, finding social circles in social networks, personalized recommendations, link prediction, etc. These tasks are not well served by existing vertex-centric graph processing frameworks whose computation and execution models limit the user program to directly access the state of a single vertex, resulting in high execution overheads. Further, the lack of support for extracting the relevant portions of the graph that are of interest to an analysis task and loading it onto distributed memory leads to poor scalability. NSCALE allows users to write programs at the level of neighborhoods or subgraphs rather than at the level of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient distributed execution of these neighborhood-centric complex analysis tasks over largescale graphs, while minimizing resource consumption and communication cost, thereby substantially reducing the overall cost of graph data analytics in the Cloud. The results of our extensive experimental evaluation of these prototypes with several real-world data sets and applications validate the effectiveness of our techniques which provide orders-of-magnitude reductions in the overheads of distributed data querying and analysis in the Cloud.
Resumo:
Part 4: Transition Towards Product-Service Systems
Resumo:
With the progress of computer technology, computers are expected to be more intelligent in the interaction with humans, presenting information according to the user's psychological and physiological characteristics. However, computer users with visual problems may encounter difficulties on the perception of icons, menus, and other graphical information displayed on the screen, limiting the efficiency of their interaction with computers. In this dissertation, a personalized and dynamic image precompensation method was developed to improve the visual performance of the computer users with ocular aberrations. The precompensation was applied on the graphical targets before presenting them on the screen, aiming to counteract the visual blurring caused by the ocular aberration of the user's eye. A complete and systematic modeling approach to describe the retinal image formation of the computer user was presented, taking advantage of modeling tools, such as Zernike polynomials, wavefront aberration, Point Spread Function and Modulation Transfer Function. The ocular aberration of the computer user was originally measured by a wavefront aberrometer, as a reference for the precompensation model. The dynamic precompensation was generated based on the resized aberration, with the real-time pupil diameter monitored. The potential visual benefit of the dynamic precompensation method was explored through software simulation, with the aberration data from a real human subject. An "artificial eye'' experiment was conducted by simulating the human eye with a high-definition camera, providing objective evaluation to the image quality after precompensation. In addition, an empirical evaluation with 20 human participants was also designed and implemented, involving image recognition tests performed under a more realistic viewing environment of computer use. The statistical analysis results of the empirical experiment confirmed the effectiveness of the dynamic precompensation method, by showing significant improvement on the recognition accuracy. The merit and necessity of the dynamic precompensation were also substantiated by comparing it with the static precompensation. The visual benefit of the dynamic precompensation was further confirmed by the subjective assessments collected from the evaluation participants.
Resumo:
Research in human computer interaction (HCI) covers both technological and human behavioural concerns. As a consequence, the contributions made in HCI research tend to be aware to either engineering or the social sciences. In HCI the purpose of practical research contributions is to reveal unknown insights about human behaviour and its relationship to technology. Practical research methods normally used in HCI include formal experiments, field experiments, field studies, interviews, focus groups, surveys, usability tests, case studies, diary studies, ethnography, contextual inquiry, experience sampling, and automated data collection. In this paper, we report on our experience using the evaluation methods focus groups, surveys and interviews and how we adopted these methods to develop artefacts: either interface’s design or information and technological systems. Four projects are examples of the different methods application to gather information about user’s wants, habits, practices, concerns and preferences. The goal was to build an understanding of the attitudes and satisfaction of the people who might interact with a technological artefact or information system. Conversely, we intended to design for information systems and technological applications, to promote resilience in organisations (a set of routines that allow to recover from obstacles) and user’s experiences. Organisations can here also be viewed within a system approach, which means that the system perturbations even failures could be characterized and improved. The term resilience has been applied to everything from the real estate, to the economy, sports, events, business, psychology, and more. In this study, we highlight that resilience is also made up of a number of different skills and abilities (self-awareness, creating meaning from other experiences, self-efficacy, optimism, and building strong relationships) that are a few foundational ingredients, which people should use along with the process of enhancing an organisation’s resilience. Resilience enhances knowledge of resources available to people confronting existing problems.
Resumo:
This study evaluated the dentine bond strength (BS) and the antibacterial activity (AA) of six adhesives against strict anaerobic and facultative bacteria. Three adhesives containing antibacterial components (Gluma 2Bond (glutaraldehyde)/G2B, Clearfil SE Protect (MDPB)/CSP and Peak Universal Bond (PUB)/chlorhexidine) and the same adhesive versions without antibacterial agents (Gluma Comfort Bond/GCB, Clearfil SE Bond/CSB and Peak LC Bond/PLB) were tested. The AA of adhesives and control groups was evaluated by direct contact method against four strict anaerobic and four facultative bacteria. After incubation, according to the appropriate periods of time for each microorganism, the time to kill microorganisms was measured. For BS, the adhesives were applied according to manufacturers' recommendations and teeth restored with composite. Teeth (n=10) were sectioned to obtain bonded beams specimens, which were tested after artificial saliva storage for one week and one year. BS data were analyzed using two-way ANOVA and Tukey test. Saliva storage for one year reduces the BS only for GCB. In general G2B and GCB required at least 24h for killing microorganisms. PUB and PLB killed only strict anaerobic microorganisms after 24h. For CSP the average time to eliminate the Streptococcus mutans and strict anaerobic oral pathogens was 30min. CSB showed no AA against facultative bacteria, but had AA against some strict anaerobic microorganisms. Storage time had no effect on the BS for most of the adhesives. The time required to kill bacteria depended on the type of adhesive and never was less than 10min. Most of the adhesives showed stable bond strength after one year and the Clearfil SE Protect may be a good alternative in restorative procedures performed on dentine, considering its adequate bond strength and better antibacterial activity.
Resumo:
The inclined plane test (IPT) is commonly performed to measure the interface shear strength between different materials as those used in cover systems of landfills. The test, when interpreted according to European test Standards provides the static interface friction angle, usually assumed for 50 mm displacement and denoted as phi(stat)(50). However, if interpreted considering the several phases of the sliding process, the test is capable of yielding more realistic information about the interface shear strength such as differentiating interfaces which exhibit the same value of phi(stat)(50) but different behavior for displacement less than 50 mm. In this paper, the IPT is used to evaluate the interface shear strength of some materials usually present in cover liner systems of landfill. The results of the tests were analyzed for both, the static and the dynamic phases of the sliding and were interpreted based on the static initial friction angle, phi(0), and the limit friction angle, phi(lim). It is shown that depending on the sliding behavior of the interfaces, phi(stat)(50), which is usually adopted as the designing parameter in stability analysis, can be larger than phi(0) and phi(lim). (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
One of the e-learning environment goal is to attend the individual needs of students during the learning process. The adaptation of contents, activities and tools into different visualization or in a variety of content types is an important feature of this environment, bringing to the user the sensation that there are suitable workplaces to his profile in the same system. Nevertheless, it is important the investigation of student behaviour aspects, considering the context where the interaction happens, to achieve an efficient personalization process. The paper goal is to present an approach to identify the student learning profile analyzing the context of interaction. Besides this, the learning profile could be analyzed in different dimensions allows the system to deal with the different focus of the learning.
Resumo:
This paper presents a free software tool that supports the next-generation Mobile Communications, through the automatic generation of models of components and electronic devices based on neural networks. This tool enables the creation, training, validation and simulation of the model directly from measurements made on devices of interest, using an interface totally oriented to non-experts in neural models. The resulting model can be exported automatically to a traditional circuit simulator to test different scenarios.