880 resultados para Translating and interpreting
Resumo:
Stable isotope analysis has become a standard ecological tool for elucidating feeding relationships of organisms and determining food web structure and connectivity. There remain important questions concerning rates at which stable isotope values are incorporated into tissues (turnover rates) and the change in isotope value between a tissue and a food source (discrimination values). These gaps in our understanding necessitate experimental studies to adequately interpret field data. Tissue turnover rates and discrimination values vary among species and have been investigated in a broad array of taxa. However, little attention has been paid to ectothermic top predators in this regard. We quantified the turnover rates and discrimination values for three tissues (scutes, red blood cells, and plasma) in American alligators (Alligator mississippiensis). Plasma turned over faster than scutes or red blood cells, but turnover rates of all three tissues were very slow in comparison to those in endothermic species. Alligator δ15N discrimination values were surprisingly low in comparison to those of other top predators and varied between experimental and control alligators. The variability of δ15N discrimination values highlights the difficulties in using δ15N to assign absolute and possibly even relative trophic levels in field studies. Our results suggest that interpreting stable isotope data based on parameter estimates from other species can be problematic and that large ectothermic tetrapod tissues may be characterized by unique stable isotope dynamics relative to species occupying lower trophic levels and endothermic tetrapods.
Resumo:
Many U.S. students do not perform well on mathematics assessments with respect to algebra topics such as linear functions, a building-block for other functions. Poor achievement of U.S. middle school students in this topic is a problem. U.S. eighth graders have had average mathematics scores on international comparison tests such as Third International Mathematics Science Study, later known as Trends in Mathematics and Science Study, (TIMSS)-1995, -99, -03, while Singapore students have had highest average scores. U.S. eighth grade average mathematics scores improved on TIMMS-2007 and held steady onTIMMS-2011. Results from national assessments, PISA 2009 and 2012 and National Assessment of Educational Progress of 2007, 2009, and 2013, showed a lack of proficiency in algebra. Results of curriculum studies involving nations in TIMSS suggest that elementary textbooks in high-scoring countries were different than elementary textbooks and middle grades texts were different with respect to general features in the U.S. The purpose of this study was to compare treatments of linear functions in Singapore and U.S. middle grades mathematics textbooks. Results revealed features currently in textbooks. Findings should be valuable to constituencies who wish to improve U.S. mathematics achievement. Portions of eight Singapore and nine U.S. middle school student texts pertaining to linear functions were compared with respect to 22 features in three categories: (a) background features, (b) general features of problems, and (c) specific characterizations of problem practices, problem-solving competency types, and transfer of representation. Features were coded using a codebook developed by the researcher. Tallies and percentages were reported. Welch's t-tests and chi-square tests were used, respectively, to determine whether texts differed significantly for the features and if codes were independent of country. U.S. and Singapore textbooks differed in page appearance and number of pages, problems, and images. Texts were similar in problem appearance. Differences in problems related to assessment of conceptual learning. U.S. texts contained more problems requiring (a) use of definitions, (b) single computation, (c) interpreting, and (d) multiple responses. These differences may stem from cultural differences seen in attitudes toward education. Future studies should focus on density of page, spiral approach, and multiple response problems.
Resumo:
We are able to give a complete description of four-dimensional Lie algebras g which satisfy the tame-compatible question of Donaldson for all almost complex structures J on g are completely described. As a consequence, examples are given of (non-unimodular) four-dimensional Lie algebras with almost complex structures which are tamed but not compatible with symplectic forms.? Note that Donaldson asked his question for compact four-manifolds. In that context, the problem is still open, but it is believed that any tamed almost complex structure is in fact compatible with a symplectic form. In this presentation, I will define the basic objects involved and will give some insights on the proof. The key for the proof is translating the problem into a Linear Algebra setting. This is a joint work with Dr. Draghici.
Resumo:
There is increasing evidence indicating that syndepositional redistribution of sediment on the seafloor by bottom currents is common and can significantly affect sediment mass accumulation rates. Notwithstanding its common incidence, this process (generally referred to as sediment focusing) is often difficult to recognize. If redistribution is near synchronous to deposition, the stratigraphy of the sediment is not disturbed and sediment focusing can easily be overlooked. Ignoring it, however, can lead to serious misinterpretations of sedimentary fluxes, particularly when past changes in export flux from the overlying water are inferred. In many instances, this problem can be resolved, at least for sediments deposited during the late Quaternary, by normalizing to the flux of 230Th scavenged from seawater, which is nearly constant and equivalent to the known rate of production of 230Th from the decay of dissolved 234U. We review the principle, advantages and limitations of this method. Notwithstanding its limitations, it is clear that 230Th normalization does provide a means of achieving more accurate interpretations of sedimentary fluxes and eliminates the risk of serious misinterpretations of sediment mass accumulation rates.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Acknowledgments We thank Edoardo Del Pezzo, Ludovic Margerin, Haruo Sato, Mare Yamamoto, Tatsuhiko Saito, Malcolm Hole, and Seth Moran for the valuable suggestions regarding the methodology and interpretation. Greg Waite provided the P wave velocity model of MSH. An important revision of the methods was done after two blind reviews performed before submission. The suggestions of two anonymous reviewers greatly enhanced our ability of imaging structures, interpreting our results, and testing their reliability. The facilities of the IRIS Data Management System, and specifically the IRIS Data Management Center, were used for access to waveform and metadata required in this study, and provided by the Cascades Volcano Observatory – USGS. Interaction with geologists and geographers part of the Landscape Dynamics Theme of the Scottish Alliance for Geoscience, Environment and Society (SAGES) has been important for the interpretation of the results.
Resumo:
Acknowledgements The Interdisciplinary Chronic Disease Collaboration (ICDC) is funded through the Alberta Heritage Foundation for Medical Research (AHFMR) Inter-disciplinary Team Grants Program. AHFMR is now Alberta Innovates – Health Solutions (AI-HS). The funding agreement ensured the authors’ independence in designing the study, interpreting the data, writing, and publishing the report. The Chief Scientist Office of the Scottish Government Health and Social Care Directorates funds HERU. The views expressed in this paper are those of the authors only and not those of the funding bodies.
Resumo:
This study focuses on a series of foundational stylistic and formal innovations in eighteenth-century and Romantic literature, and argues that they can be cumulatively attributed to the distinct challenges authors faced in representing human action and the will. The study focuses in particular on cases of “acting against better judgment” or “failing to do what one knows one ought to do” – concepts originally theorized as “akrasia” and “weakness of the will” in ancient Greek and Scholastic thought. During the Enlightenment, philosophy increasingly conceives of human minds and bodies like systems and machines, and consequently fails to address such cases except as intractable or incoherent. Yet eighteenth-century and Romantic narratives and poetry consistently engage the paradoxes and ambiguities of action and volition in representations of akrasia. As a result, literature develops representational strategies that distinguish the epistemic capacities of literature as privileged over those of philosophy.
The study begins by centering on narratives of distempered selves from the 1760s. Jean-Jacques Rousseau’s Confessions and Laurence Sterne’s A Sentimental Journey narrate cases of knowingly and weakly acting against better judgment, and in so doing, reveal the limitations of the “philosophy of the passions” that famously informed sentimental literature at the time. These texts find that the interpretive difficulties of action demand a non-systematic and hermeneutic approach to interpreting a self through the genre of narrative. Rousseau’s narrative in particular informs William Godwin’s realist novels of distempered subjects. Departing from his mechanistic philosophy of mind and action, Godwin develops the technique of free indirect discourse in his third novel Fleetwood (1805) as a means of evoking the ironies and self-deceptions in how we talk about willing.
Romantic poetry employs the literary trope of weakness of will primarily through the problem of regretted inaction – a problem which I argue motivates the major poetic innovations of William Wordsworth and John Keats. While Samuel Taylor Coleridge sought to characterize his weakness of will in philosophical writing, Wordsworth turns to poetry with The Prelude (1805), revealing poetry itself to be a self-deceiving and disappointing form of procrastination. More explicitly than Wordsworth, John Keats identifies indolence as the prime symbol and basis of what he calls “negative capability.” In his letters and poems such as “On Seeing the Elgin Marbles” (1817) and “Ode on Indolence” (1819), Keats reveals how the irreducibly contradictory qualities of human agency speak to the particular privilege of “disinterested aesthetics” – a genre fitted for the modern era for its ability to disclose contradictions without seeking to resolve or explain them in terms of component parts.
Resumo:
Cell-to-cell signals of the Diffusible Signal Factor (DSF) family are cis-2-unsaturated fatty acids of differing chain length and branching pattern. DSF signalling has been described in diverse bacteria to include plant and human pathogens where it acts to regulate functions such as biofilm formation, antibiotic tolerance and the production of virulence factors. DSF family signals can also participate in interspecies signalling with other bacteria and interkingdom signaling such as with the yeast Candida albicans. Interference with DSF signalling may afford new opportunities for the control of bacterial disease. Such strategies will depend in part on detailed knowledge of the molecular mechanisms underlying the processes of signal synthesis, perception and turnover. Here, I review both recent progress in understanding DSF signalling at the molecular level and prospects for translating this knowledge into approaches for disease control.
Resumo:
A generalized physicochemical model of the response of marine organisms' calcifying fluids to CO2-induced ocean acidification is proposed. The model is based upon the hypothesis that some marine calcifiers induce calcification by elevating pH, and thus Omega aragonite, of their calcifying fluid by removing protons (H+). The model is explored through two end-member scenarios: one in which a fixed number of H+ is removed from their calcifying fluid, regardless of atmospheric pCO2, and another in which a fixed external-internal proton ratio ([H+]E/[H+]I) is maintained. The model is able to generate the full range of calcification response patterns observed in prior ocean acidification experiments and is consistent with the assertion that organisms' calcification response to ocean acidification is more negative for marine calcifiers that exert weaker control over their calcifying fluid pH. The model is empirically evaluated for the temperate scleractinian coral Astrangia poculata with in situ pH microelectrode measurements of the coral's calcifying fluid under control and acidified conditions. These measurements reveal that (1) the pH of the coral's calcifying fluid is substantially elevated relative to its external seawater under both control and acidified conditions, (2) the coral's [H+]E/[H+]I remains constant under control and acidified conditions, and (3) the coral removes fewer H+ from its calcifying fluid under acidified conditions than under control conditions. Thus, the carbonate system dynamics of A. poculata's calcifying fluid appear to be most consistent with the fixed [H+]E/[H+]I end-member scenario. Similar microelectrode experiments performed on additional taxa are required to assess the model's general applicability.
Resumo:
In large parts of the Southern Ocean, primary production is limited due to shortage of iron (Fe). We measured vertical Fe profiles in the western Weddell Sea, Weddell-Scotia Confluence, and Antarctic Circumpolar Current (ACC), showing that Fe is derived from benthic Fe diffusion and sediment resuspension in areas characterized by high turbulence due to rugged bottom topography. Our data together with literature data reveal an exponential decrease of dissolved Fe (DFe) concentrations with increasing distance from the continental shelves of the Antarctic Peninsula and the western Weddell Sea. This decrease can be observed 3500 km eastward of the Antarctic Peninsula area, downstream the ACC. We estimated DFe summer fluxes into the upper mixed layer of the Atlantic sector of the Southern Ocean and found that horizontal advection dominates DFe supply, representing 54 ± 15% of the total flux, with significant vertical advection second most important at 29 ± 13%. Horizontal and vertical diffusion are weak with 1 ± 2% and 1 ± 1%, respectively. The atmospheric contribution is insignificant close to the Antarctic continent but increases to 15 ± 10% in the remotest waters (>1500 km offshore) of the ACC. Translating Southern Ocean carbon fixation by primary producers into biogenic Fe fixation shows a twofold excess of new DFe input close to the Antarctic continent and a one-third shortage in the open ocean. Fe recycling, with an estimated 'fe' ratio of 0.59, is the likely pathway to balance new DFe supply and Fe fixation.
Resumo:
We analysed long-term variations in grain-size distribution in sediments from Gåsfjärden, a fjord-like inlet on the south-west Baltic Sea, and explored potential drivers of the recorded changes in sediment grain-size data. Over the last 5.4 thousand years (ka), the relative sea level decreased 17 m in the study region, caused by isostatic land uplift. As a consequence, Gåsfjärden has been transformed from an open coastal setting into a semi-closed inlet surrounded on the east by numerous small islands. To quantitatively estimate the morphological changes in Gåsfjärden over the last 5.4 ka and to further link the changes to our grain-size data, a digital elevation model (DEM)-based openness index was calculated. In the period between 5.4 and 4.4 ka BP, the inlet was characterised by the largest openness index. During this interval, the highest sand contents (~0.4 %) and silt/clay ratios (~0. 3) in the sediment sequence were recorded, indicating relatively high bottom water energy. After 4.4 ka BP, the average sand content was halved to ~0.2 % and the silt/clay ratios showed a significant decreasing trend over the last 4 ka. These changes are found to be associated with the gradual embayment of Gåsfjärden as represented in the openness index. The silt/clay ratios exhibited a delayed and slower change compared with the sand contents, which further suggest that finer particles are less sensitive to changes in hydrodynamic energy. Our DEM-based coastal openness index has proved to be a useful tool for interpreting the sedimentary grain-size record.
Resumo:
Nitrogen isotopes of chlorins, degradation products of chlorophyll, reflect the isotopic composition of nutrient N utilized by marine phytoplankton communities. Here we show that in sediments of the eastern Mediterranean Pleistocene and Holocene, values of d15N for chlorins and total nitrogen vary in concert, with a consistent offset of ~5 per mil reflecting the fractionation imparted during chlorophyll biosynthesis. Samples from the Integrated Ocean Drilling Program Sites 964 and 969 were analyzed at a sampling resolution of ~4-10 cm, clustered around sapropel events 2, 3, 4 and 5 (~100-170 ka). In low organic content sediments, chlorin values of ~0 per mil coincident with total nitrogen values of ~+ 5 per mil indicate that the latter reflects the original biomass and is not a consequence of diagenetic isotope enrichment. In sapropel horizons, the chlorin and total nitrogen values are 5 per mil more negative (~-5 per mil and ~ 0 per mil, respectively), resembling previously-reported, modern-day water-column particulates (~0 per mil). We suggest that nutrient conditions in the Eastern Mediterranean correspond to three scenarios and that the similarity between sapropel and modern-day bulk d15N is coincidental. Organic-poor marl sediments formed under oligotrophic conditions where surface productivity resulted from upwelling of Atlantic-sourced nitrate. Sapropels were characterized by enhanced diazotrophy that was likely fueled by increased riverine P fluxes to surface waters. Present-day conditions are dominated by anthropogenic N sources. These scenarios agree with a model of sapropel formation in which stratification caused by increased fresh-water inputs led to N fixation due to P:N nutrient imbalance. Enhanced production combined with stratification promoted and maintained anoxic deep waters, consequently increasing organic matter preservation. Such a model may be relevant to interpreting other episodes of intense organic matter deposition in past oceans.
Resumo:
Free and "bound" long-chain alkenones (C37?2 and C37?3) in oxidized and unoxidized sections of four organic matter-rich Pliocene and Miocene Madeira Abyssal Plain turbidites (one from Ocean Drilling Program site 951B and three from site 952A) were analyzed to determine the effect of severe post depositional oxidation on the value of Uk'37. The profiles of both alkenones across the redox boundary show a preferential degradation of the C37?3 compared to the C37?2 compound. Because of the high initial Uk'37 values and the way of calculating the Uk'37 this degradation hardly influences the Uk'37 profiles. However, for lower Uk'37 values, measured selective degradation would increase Uk'37 up to 0.17 units, equivalent to 5°C. For most of the Uk'37 band-width, much smaller degradation already increases Uk'37 beyond the analytical error (0.017 units). Consequently, for interpreting the Uk'37 record in terms of past sea surface temperatures, selective degradation needs serious consideration.
Resumo:
Recrystallization processes in marine sediments can alter the extent to which biogenic calcite composition serves as a proxy of oceanic chemical and isotopic history. Models of calcite recrystallization developed to date have resulted in significant insights into these processes, but are not completely adequate to describe the conditions of recrystallization. Marine sediments frequently have concentration gradients in interstitial dissolved calcium, magnesium, and strontium which have probably evolved during sediment accumulation. Realistic, albeit simplified, models of the temporal evolution of interstitial water profiles of Ca, Mg, and Sr were used with several patterns of recrystallization rate variation to predict the composition of recrystallized inorganic calcite. Comparison of predictions with measured Mg/Ca and Sr/Ca ratios in severely altered calcite samples from several Deep Sea Drilling Project sites demonstrates that models incorporating temporal variation in interstitial water composition more successfully predict observed calcite compositions than do models which rely solely on present-day interstitial water chemistry. Temporal changes in interstitial composition are particularly important in interpreting Mg/Ca ratios in conjunction with Sr/Ca ratios. Estimates of Mg distribution coefficients from previous observations in marine sediments, much lower than those in laboratory studies of inorganic calcite, are confirmed by these results. Evaluation of the effects of diagenetic alteration of biogenic calcium carbonate sediment must be a site-specific process, taking into account accumulation history, present interstitial chemistry and its variation in the past, and sample depths and ages.