954 resultados para Theoretical and experimental


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theoretical and experimental developments in the biomaterials area have been directly applied to different fields of Medicine (odontology, regenerative medicine and radiotherapy). These advances have focused both for diagnosing diseases such as for quantifying degrees of progression. From the perspective of these studies, biomaterials are being designed and manufactured for application in various areas of science, provided advances in diagnostic radiology, radiotherapy dosimetry and calibration of radiotherapy equipment. Develop a phantom from a biomaterial has become a great ally of medicine in the treat patients with oncological diseases, allowing better performance of the equipment in order to reduce damage to healthy tissue due to excessive exposure to radiation. This work used polymers: chitosan and gelatin, for making the polymeric structures and controlled for different types of production and processing, characterizing and evaluating the biopolymer by physical techniques (STL, SEM and DEI) and therefore analyze applicability as phantom mouse lung. It was possible to evaluate the morphology of biomaterials quantitatively by scanning electron microscopy associated with imaging technique. The relevance of this work focuses on developing a phantom from polymeric biomaterials that can act as phantom providing high image contrast when subjected to analysis. Thus, the choice of DEI technique is satisfactory since it is an imaging technique of X-ray high resolution. The images obtained by DEI have shown the details of the internal microstructure of the biomaterial produced which have ≈ 10 μm dimension. The phantoms had made density ranging from 0.08 a 0.13 g/cm3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider experimentally and theoretically a refined parameter space near the transition to multi-pulse modelocking. Near the transition, the onset of instability is initiated by a Hopf (periodic) bifurcation. As cavity energy is increased, the band of unstable, oscillatory modes generates a chaotic behavior between single- and multi-pulse operation. Both theory and experiment are in good qualitative agreement and they suggest that the phenomenon is of a universal nature in mode-locked lasers at the onset of multi-pulsing from N to N + 1 pulses per round trip. This is the first theoretical and experimental characterization of the transition behavior, made possible by a highly refined tuning of the gain pump level. © 2010 Copyright SPIE - The International Society for Optical Engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research task was to give a more complete picture of the phenomenon of gender differences in mathematical, spatial, and general cognitive ability. By focusing on the social factors we examined the influence of «sibling effect» and stereotypes on the performance in these abilities. The study was conducted using an online test administration. The study involved 196 male and female participants. The results showed the absence of gender differences (with the exception of a small male advantage in mathematical fluency), as well as the absence of any sibling effect on mathematical and spatial performance. Overall, stereotype (that men show better mathematical and spatial performance) was also shown not to have an effect on any of the assessed abilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past, many papers have been presented which show that the coating of cutting tools often yields decreased wear rates and reduced coefficients of friction. Although different theories are proposed, covering areas such as hardness theory, diffusion barrier theory, thermal barrier theory, and reduced friction theory, most have not dealt with the question of how and why the coating of tool substrates with hard materials such as Titanium Nitride (TiN), Titanium Carbide (TiC) and Aluminium Oxide (Al203) transforms the performance and life of cutting tools. This project discusses the complex interrelationship that encompasses the thermal barrier function and the relatively low sliding friction coefficient of TiN on an undulating tool surface, and presents the result of an investigation into the cutting characteristics and performance of EDMed surface-modified carbide cutting tool inserts. The tool inserts were coated with TiN by the physical vapour deposition (PVD) method. PVD coating is also known as Ion-plating which is the general term of the coating method in which the film is created by attracting ionized metal vapour in this the metal was Titanium and ionized gas onto negatively biased substrate surface. Coating by PVD was chosen because it is done at a temperature of not more than 5000C whereas chemical Vapour Deposition CVD process is done at very high temperature of about 8500C and in two stages of heating up the substrates. The high temperatures involved in CVD affects the strength of the (tool) substrates. In this study, comparative cutting tests using TiN-coated control specimens with no EDM surface structures and TiN-coated EDMed tools with a crater-like surface topography were carried out on mild steel grade EN-3. Various cutting speeds were investigated, up to an increase of 40% of the tool manufacturer’s recommended speed. Fifteen minutes of cutting were carried out for each insert at the speeds investigated. Conventional tool inserts normally have a tool life of approximately 15 minutes of cutting. After every five cuts (passes) microscopic pictures of the tool wear profiles were taken, in order to monitor the progressive wear on the rake face and on the flank of the insert. The power load was monitored for each cut taken using an on-board meter on the CNC machine to establish the amount of power needed for each stage of operation. The spindle drive for the machine is an 11 KW/hr motor. Results obtained confirmed the advantages of cutting at all speeds investigated using EDMed coated inserts, in terms of reduced tool wear and low power loads. Moreover, the surface finish on the workpiece was consistently better for the EDMed inserts. The thesis discusses the relevance of the finite element method in the analysis of metal cutting processes, so that metal machinists can design, manufacture and deliver goods (tools) to the market quickly and on time without going through the hassle of trial and error approach for new products. Improvements in manufacturing technologies require better knowledge of modelling metal cutting processes. Technically the use of computational models has a great value in reducing or even eliminating the number of experiments traditionally used for tool design, process selection, machinability evaluation, and chip breakage investigations. In this work, much interest in theoretical and experimental investigations of metal machining were given special attention. Finite element analysis (FEA) was given priority in this study to predict tool wear and coating deformations during machining. Particular attention was devoted to the complicated mechanisms usually associated with metal cutting, such as interfacial friction; heat generated due to friction and severe strain in the cutting region, and high strain rates. It is therefore concluded that Roughened contact surface comprising of peaks and valleys coated with hard materials (TiN) provide wear-resisting properties as the coatings get entrapped in the valleys and help reduce friction at chip-tool interface. The contributions to knowledge: a. Relates to a wear-resisting surface structure for application in contact surfaces and structures in metal cutting and forming tools with ability to give wear-resisting surface profile. b. Provide technique for designing tool with roughened surface comprising of peaks and valleys covered in conformal coating with a material such as TiN, TiC etc which is wear-resisting structure with surface roughness profile compose of valleys which entrap residual coating material during wear thereby enabling the entrapped coating material to give improved wear resistance. c. Provide knowledge for increased tool life through wear resistance, hardness and chemical stability at high temperatures because of reduced friction at the tool-chip and work-tool interfaces due to tool coating, which leads to reduced heat generation at the cutting zones. d. Establishes that Undulating surface topographies on cutting tips tend to hold coating materials longer in the valleys, thus giving enhanced protection to the tool and the tool can cut faster by 40% and last 60% longer than conventional tools on the markets today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Additional theoretical and experimental results are presented for a choice reaction time performance model described by Oilman (1966). A formula is given for estimating the latency distribution of true recognition responses from the results of a single session; the estimate is invariant with respect to changes in the proportion of “guess” responses and with respect to fluctuations in the latency distribution of guesses. © 1967, Psychonomic Press. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Theoretical and Experimental Tomography in the Sea Experiment (THETIS 1) took place in the Gulf of Lion to observe the evolution of the temperature field and the process of deep convection during the 1991-1992 winter. The temperature measurements consist, of moored sensors, conductivity-temperature-depth and expendable bathythermograph surveys, ana acoustic tomography. Because of this diverse data set and since the field evolves rather fast, the analysis uses a unified framework, based on estimation theory and implementing a Kalman filter. The resolution and the errors associated with the model are systematically estimated. Temperature is a good tracer of water masses. The time-evolving three-dimensional view of the field resulting from the analysis shows the details of the three classical convection phases: preconditioning, vigourous convection, and relaxation. In all phases, there is strong spatial nonuniformity, with mesoscale activity, short timescales, and sporadic evidence of advective events (surface capping, intrusions of Levantine Intermediate Water (LIW)). Deep convection, reaching 1500 m, was observed in late February; by late April the field had not yet returned to its initial conditions (strong deficit of LIW). Comparison with available atmospheric flux data shows that advection acts to delay the occurence of convection and confirms the essential role of buoyancy fluxes. For this winter, the deep. mixing results in an injection of anomalously warm water (Delta T similar or equal to 0.03 degrees) to a depth of 1500 m, compatible with the deep warming previously reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New constraints on isotope fractionation factors in inorganic aqueous sulfur systems based on theoretical and experimental techniques relevant to studies of the sulfur cycle in modern environments and the geologic rock record are presented in this dissertation. These include theoretical estimations of equilibrium isotope fractionation factors utilizing quantum mechanical software and a water cluster model approach for aqueous sulfur compounds that span the entire range of oxidation state for sulfur. These theoretical calculations generally reproduce the available experimental determinations from the literature and provide new constraints where no others are available. These theoretical calculations illustrate in detail the relationship between sulfur bonding environment and the mass dependence associated with equilibrium isotope exchange reactions involving all four isotopes of sulfur. I additionally highlight the effect of isomers of protonated compounds (compounds with the same chemical formula but different structure, where protons are bound to either sulfur or oxygen atoms) on isotope partitioning in the sulfite (S4+) and sulfoxylate (S2+) systems, both of which are key intermediates in oxidation-reduction processes in the sulfur cycle. I demonstrate that isomers containing the highest degree of coordination around sulfur (where protonation occurs on the sulfur atom) have a strong influence on isotopic fractionation factors, and argue that isomerization phenomenon should be considered in models of the sulfur cycle. Additionally, experimental results of the reaction rates and isotope fractionations associated with the chemical oxidation of aqueous sulfide are presented. Sulfide oxidation is a major process in the global sulfur cycle due largely to the sulfide-producing activity of anaerobic microorganisms in organic-rich marine sediments. These experiments reveal relationships between isotope fractionations and reaction rate as a function of both temperature and trace metal (ferrous iron) catalysis that I interpret in the context of the complex mechanism of sulfide oxidation. I also demonstrate that sulfide oxidation is a process associated with a mass dependence that can be described as not conforming to the mass dependence typically associated with equilibrium isotope exchange. This observation has implications for the inclusion of oxidative processes in environmental- and global-scale models of the sulfur cycle based on the mass balance of all four isotopes of sulfur. The contents of this dissertation provide key reference information on isotopic fractionation factors in aqueous sulfur systems that will have far-reaching applicability to studies of the sulfur cycle in a wide variety of natural settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this review, we consider the main processes for the asymmetric transfer hydrogenation of ketones from 2008 up today. The most effective organometallic compounds (derived from Ru, Rh, Ir, Fe, Os, Ni, Co, and Re) and chiral ligands (derived from amino alcohols, diamines, sulfur- and phosphorus-containing compounds, as well as heterocyclic systems) will be shown paying special attention to functionalized substrates, tandem reactions, processes under non-conventional conditions, supported catalysts, dynamic kinetic resolutions, the use of water as a green solvent, theoretical and experimental studies on reaction mechanisms, enzymatic processes, and finally applications to the total synthesis of biologically active organic molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ambipolar organic field-effect transistors (OFETs), which can efficiently transport both holes and electrons, using a single type of electrode, are currently of great interest due to their possible applications in complementary metal oxide semiconductor (CMOS)-like circuits, sensors, and in light-emitting transistors. Several theoretical and experimental studies have argued that most organic semiconductors should be able to transport both types of carrier, although typically unipolar behavior is observed. One factor that can compromise ambipolar transport in organic semiconductors is poor solid state overlap between the HOMO (p-type) or LUMO (n-type) orbitals of neighboring molecules in the semiconductor thin film. In the search of low-bandgap ambipolar materials, where the absence of skeletal distortions allows closer intermolecular π-π stacking and enhanced intramolecular π-conjugation, a new family of oligothiophene-naphthalimide assemblies have been synthesized and characterized, in which both donor and acceptor moieties are directly conjugated through rigid linkers. In previous works we found that oligothiophene-napthalimide assemblies connected through amidine linkers (NDI derivates) exhibit skeletal distortions (50-60º) arising from steric hindrance between the carbonyl group of the arylene core and the sulphur atom of the neighbored thiophene ring (see Figure 1). In the present work we report novel oligo- and polythiophene–naphthalimide analogues NAI-3T, NAI-5T and poly-NAI-8C-3T, in which the connections of the amidine linkage have been inverted in order to prevent steric interactions. Thus, the nitrogen atoms are directly connected to the naphthalene moiety in NAI derivatives while they were attached directly to the thiophene moiety in the previously investigated NDI-3T and NDI-5T. In Figure 1 is depicted the calculated molecular structure of NAI-3T together with that of NDI-3T showing how the steric interactions are not present in the novel NAI derivative. The planar skeletons in these new family induce higher degree of crystallinity and the carrier charge transport can be switched from n-type to ambipolar behaviour. The highest FET performance is achieved for vapor-deposited films of NAI-3T with mobilities of 1.95x10-4cm2V-1s-1 and 2.00x10-4cm2V-1s-1 for electrons and holes, respectively. Finally, these planar semiconductors are compared with their NDI derivates analogues, which exhibit only n-type mobility, in order to understand the origin of the ambipolarity in this new series of molecular semiconductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to simulate and optically characterize the piezoelectric performance of complementary metal oxide semiconductor (CMOS) compatible microcantilevers based on aluminium nitride (AlN) and manufactured at room temperature. This study should facilitate the integration of piezoelectric micro-electro-mechanical systems (MEMS) such as microcantilevers, in CMOS technology. Besides compatibility with standard integrated circuit manufacturing procedures, low temperature processing also translates into higher throughput and, as a consequence, lower manufacturing costs. Thus, the use of the piezoelectric properties of AlN manufactured by reactive sputtering at room temperature is an important step towards the integration of this type of devices within future CMOS technology standards. To assess the reliability of our fabrication process, we have manufactured arrays of free-standing microcantilever beams of variable dimension and studied their piezoelectric performance. The characterization of the first out-of-plane modes of AlN-actuated piezoelectric microcantilevers has been carried out using two optical techniques: laser Doppler vibrometry (LDV) and white light interferometry (WLI). In order to actuate the cantilevers, a periodic chirp signal in certain frequency ranges was applied between the device electrodes. The nature of the different vibration modes detected has been studied and compared with that obtained by a finite element model based simulation (COMSOL Multiphysics), showing flexural as well as torsional modes. The correspondence between theoretical and experimental data is reasonably good, probing the viability of this high throughput and CMOS compatible fabrication process. To complete the study, X-ray diffraction as well as d33 piezoelectric coefficient measurements were also carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A actividade aqui descrita teve como objectivo aproximar alunos do ensino secundário a uma abordagem fisiológica e molecular sobre os efeitos dos metais nos seres vivos. Os alunos ficaram familiarizados com abordagens teóricas e experimentais que permitiram avaliar o crescimento celular por observação qualitativa, determinação do conteúdo proteico e da actividade específica fosfatase alcalina (ALP), recorrendo a centrifugação diferencial, leituras de absorvência e tratamento informático dos resultados. Os estudantes concluíram que a presença de metavanadato de amónio inibiu o crescimento da levedura vínica Saccharomyces cerevisiae UE-ME3, causando um decréscimo significativo do conteúdo proteico e da actividade específica ALP, um marcador da proliferação celular. A avaliação de competências adquiridas, bem como, os inquéritos de opinião mostraram que a maior parte dos alunos do 10° e 12° ano da Escola Secundária Dom Manuel Martins de Setúbal, envolvidos nesta acção, atingiram com sucesso e satisfação os objectivos previamente traçados, revelando uma aprendizagem significativa. ABSTRACT: The work described here aimed to bring high school students to a physiological and molecular approach on the effects of metals in living organisms. The students were familiar with theoretical and experimental approaches that allowed them to evaluate cell growth by qualitative observation, protein contents and alkaline phosphatase (ALP) determination, using differential centrifugation, absorbance readings and computational analysis of data. The students concluded that the presence of ammonium metavanadate inhibited the wine-wild yeast Saccharomyces cerevisiae UE-ME3 growth, and cause a significant decrease of protein content and ALP specific activity, a cell proliferation marker. The assessment of acquired skills, as well as opinion surveys showed that the vast majority of students of 10th and 12nd years of High School Dom Manuel Martins of Setúbal, involved in this project have reached with success and satisfaction the goals previously set for this action and reveals a significant learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we realized and experimental and theoretical study of the N-alkylation of nitroimidazoles. The N-alkyl-2-methyl-nitroimidazoles correspond to biologically active molecules, obtained by reaction of 2-methyl-5-nitroimidazole and different alkyl halides. This reaction showed the formation of a mixture of isomeric products in different proportions, denominated like N-alkyl-2-methyl-4-nitroimidazole and N-alkyl-2-methyl-5-nitroimidazole, respectively. The reaction suggestes the formation of a tautomeric equilibrium, which generates two nucleophilic sites susceptible to electrophilic attack by the alkyl halide. The local nucleophilic reactivity of the nitroimidazole nng is determined using local reactivity indices such as the Fukui function and the electrostatic potential, besides the electronic localization function (ELF). The Fukui function was integrated for each atom using partition schemes based on analysis of Mulliken charges and natural bond orbital (NBO). Finally the reaction profiles were assessed. The results show a minor difference in the local reactivity. Nevertheless a significant difference in energy barriers is observed explaining the formation of an isomeric product over another. These results agree quite well with the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intense and broad photoluminescence (PL) emission at room temperature was observed on structurally disordered Ba[Zr0.25Ti0.75]O-3 (BZT) powders synthesized by the polymeric precursor method. BZT powders were annealed at 573 K for different times and at 973 K for 2 h in oxygen atmosphere. The single-phase cubic perovskite structure of the powder annealed at 973 K for 2 It was identified by X-ray diffraction and Fourier transform Raman techniques. PL emission increased with the increase of annealing time, which reached its maximum value in the powder annealed at 573 K for 192 h. First principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered models. The theoretical calculations and experimental measurements of Ultraviolet-visible absorption spectroscopy indicate that the presence of intermediary energy levels in the band gap is favorable for the intense and broad PL emission at room temperature in disordered BZT powders. The PL behavior is probably due the existence of a charge gradient on the disordered structure, denoted by means of a charge transfer process from [TiO5]-[ZrO6] or [TiO6]-[ZrO5] clusters to [TiO6]-[ZrO6] clusters. (C) 2008 Elsevier Ltd. All rights reserved.