952 resultados para Strategic implementation
Resumo:
33 p.
Resumo:
27 p.
Resumo:
48 p.
Resumo:
The Water Framework Directive (WFD; European Commission 2000) is a framework for European environmental legislation that aims at improving water quality by using an integrated approach to implement the necessary societal and technical measures. Assessments to guide, support, monitor and evaluate policies, such as the WFD, require scientific approaches which integrate biophysical and human aspects of ecological systems and their interactions, as outlined by the International Council for Science (2002). These assessments need to be based on sound scientific principles and address the environmental problems in a holistic way. End-users need help to select the most appropriate methods and models. Advice on the selection and use of a wide range of water quality models has been developed within the project Benchmark Models for the Water Framework Directive (BMW). In this article, the authors summarise the role of benchmarking in the modelling process and explain how such an archive of validated models can be used to support the implementation of the WFD.
Resumo:
We demonstrate that a pattern spectrum can be decomposed into the union of hit-or-miss transforms with respect to a series of structure-element pairs. Moreover we use a Boolean-logic function to express the pattern spectrum and show that the Boolean-logic representation of a pattern spectrum is composed of hit-or-miss min terms. The optical implementation of a pattern spectrum is based on an incoherent optical correlator with a feedback operation. (C) 1996 Optical Society of America
Resumo:
Fuzzy-reasoning theory is widely used in industrial control. Mathematical morphology is a powerful tool to perform image processing. We apply fuzzy-reasoning theory to morphology and suggest a scheme of fuzzy-reasoning morphology, including fuzzy-reasoning dilation and erosion functions. These functions retain more fine details than the corresponding conventional morphological operators with the same structuring element. An optical implementation has been developed with area-coding and thresholding methods. (C) 1997 Optical Society of America.
Resumo:
The scaled fractional Fourier transform is suggested and is implemented optically by one lens for different values of phi and output scale. In addition, physically it relates the FRT with the general lens transform-the optical diffraction between two asymmetrically positioned planes before and after a lens. (C) 1997 Optical Society of America.
Resumo:
A more powerful tool for binary image processing, i.e., logic-operated mathematical morphology (LOMM), is proposed. With LOMM the image and the structuring element (SE) are treated as binary logical variables, and the MULTIPLY between the image and the SE in correlation is replaced with 16 logical operations. A total of 12 LOMM operations are obtained. The optical implementation of LOMM is described. The application of LOMM and its experimental results are also presented. (C) 1999 Optical Society of America.
Resumo:
A novel, to our knowledge, two-step digit-set-restricted modified signed-digit (MSD) addition-subtraction algorithm is proposed. With the introduction of the reference digits, the operand words are mapped into an intermediate carry word with all digits restricted to the set {(1) over bar, 0} and an intermediate sum word with all digits restricted to the set {0, 1}, which can be summed to form the final result without carry generation. The operation can be performed in parallel by use of binary logic. An optical system that utilizes an electron-trapping device is suggested for accomplishing the required binary logic operations. By programming of the illumination of data arrays, any complex logic operations of multiple variables can be realized without additional temporal latency of the intermediate results. This technique has a high space-bandwidth product and signal-to-noise ratio. The main structure can be stacked to construct a compact optoelectronic MSD adder-subtracter. (C) 1999 Optical Society of America.
Resumo:
Fuzzy sets in the subject space are transformed to fuzzy solid sets in an increased object space on the basis of the development of the local umbra concept. Further, a counting transform is defined for reconstructing the fuzzy sets from the fuzzy solid sets, and the dilation and erosion operators in mathematical morphology are redefined in the fuzzy solid-set space. The algebraic structures of fuzzy solid sets can lead not only to fuzzy logic but also to arithmetic operations. Thus a fuzzy solid-set image algebra of two image transforms and five set operators is defined that can formulate binary and gray-scale morphological image-processing functions consisting of dilation, erosion, intersection, union, complement, addition, subtraction, and reflection in a unified form. A cellular set-logic array architecture is suggested for executing this image algebra. The optical implementation of the architecture, based on area coding of gray-scale values, is demonstrated. (C) 1995 Optical Society of America
Resumo:
Fuzzification is introduced into gray-scale mathematical morphology by using two-input one-output fuzzy rule-based inference systems. The fuzzy inferring dilation or erosion is defined from the approximate reasoning of the two consequences of a dilation or an erosion and an extended rank-order operation. The fuzzy inference systems with numbers of rules and fuzzy membership functions are further reduced to a simple fuzzy system formulated by only an exponential two-input one-output function. Such a one-function fuzzy inference system is able to approach complex fuzzy inference systems by using two specified parameters within it-a proportion to characterize the fuzzy degree and an exponent to depict the nonlinearity in the inferring. The proposed fuzzy inferring morphological operators tend to keep the object details comparable to the structuring element and to smooth the conventional morphological operations. Based on digital area coding of a gray-scale image, incoherently optical correlation for neighboring connection, and optical thresholding for rank-order operations, a fuzzy inference system can be realized optically in parallel. (C) 1996 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Based on the two-step modified signed-digit (MSD) algorithm, we present a one-step algorithm for the parallel addition and subtraction of two MSD numbers. This algorithm is reached by classifying the three neighboring digit pairs into 10 groups and then making a decision on the groups. It has only a look-up truth table, and can be further formulated by eight computation rules. A joint spatial encoding technique is developed to represent both the input data and the computation rules. Furthermore, an optical correlation architecture is suggested to implement the MSD adder in parallel. An experimental demonstration is also given. (C) 1996 Society of Photo-Optical instrumentation Engineers.
Resumo:
A 2-D SW-banyan network is introduced by properly folding the 1-D SW-banyan network, and its corresponding optical setup is proposed by means of polarizing beamsplitters and 2-D phase spatial light modulators. Then, based on the characteristics and the proposed optical setup, the control for the routing path between any source-destination pair is given, and the method to determine whether a given permutation is permissible or not is discussed. Because the proposed optical setup consists of only optical polarization elements, it is compact in structure, its corresponding energy loss and crosstalk are low, and its corresponding available number of channels is high. (C) 1996 Society of Photo-Optical Instrumentation Engineers.