788 resultados para Space robotics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of the chemical attributes is directly influenced by superficial flow and water movement inside the soil. This work aimed to study the space dependency of chemical attributes in an area with sugarcane plantation in Pereira Barreto, SP. An area of 530.67 hectares was mapped using an equipment of Global Positioning System and obtaining a Digital Elevation Model. A set of 134 soil samples were collected every seven hectares in the depths of 0-0.25 m and 0.80-1.00 m. The pH, organic matter (OM), Ca, Mg, K, BS, CEC and base saturation (BS) were analyzed. All the chemical attributes presented similar behavior in the superficial and subsuperficial layer of the soil, which provided better visualization and definition of the homogeneous tillage zones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we propose a probabilistic mapping method with the mapped environment represented through a modified occupancy grid. The main idea of the proposed method is to allow a mobile robot to construct in a systematic and incremental way the geometry of the underlying space, obtaining at the end a complete environment map. As a consequence, the robot can move in the environment in a safe way, based on a confidence value of data obtained from its perceptive system. The map is represented in a coherent way, according to its sensory data, being these noisy or not, that comes from exterior and proprioceptive sensors of the robot. Characteristic noise incorporated in the data from these sensors are treated by probabilistic modeling in such a way that their effects can be visible in the final result of the mapping process. The results of performed experiments indicate the viability of the methodology and its applicability in the area of autonomous mobile robotics, thus being an contribution to the field

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Thesis, the development of the dynamic model of multirotor unmanned aerial vehicle with vertical takeoff and landing characteristics, considering input nonlinearities and a full state robust backstepping controller are presented. The dynamic model is expressed using the Newton-Euler laws, aiming to obtain a better mathematical representation of the mechanical system for system analysis and control design, not only when it is hovering, but also when it is taking-off, or landing, or flying to perform a task. The input nonlinearities are the deadzone and saturation, where the gravitational effect and the inherent physical constrains of the rotors are related and addressed. The experimental multirotor aerial vehicle is equipped with an inertial measurement unit and a sonar sensor, which appropriately provides measurements of attitude and altitude. A real-time attitude estimation scheme based on the extended Kalman filter using quaternions was developed. Then, for robustness analysis, sensors were modeled as the ideal value with addition of an unknown bias and unknown white noise. The bounded robust attitude/altitude controller were derived based on globally uniformly practically asymptotically stable for real systems, that remains globally uniformly asymptotically stable if and only if their solutions are globally uniformly bounded, dealing with convergence and stability into a ball of the state space with non-null radius, under some assumptions. The Lyapunov analysis technique was used to prove the stability of the closed-loop system, compute bounds on control gains and guaranteeing desired bounds on attitude dynamics tracking errors in the presence of measurement disturbances. The controller laws were tested in numerical simulations and in an experimental hexarotor, developed at the UFRN Robotics Laboratory

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we propose methodologies and computer tools to insert robots in cultural environments. The basic idea is to have a robot in a real context (a cultural space) that can represent an user connected to the system through Internet (visitor avatar in the real space) and that the robot also have its representation in a Mixed Reality space (robot avatar in the virtual space). In this way, robot and avatar are not simply real and virtual objects. They play a more important role in the scenery, interfering in the process and taking decisions. In order to have this service running, we developed a module composed by a robot, communication tools and ways to provide integration of these with the virtual environment. As welI we implemented a set of behaviors with the purpose of controlling the robot in the real space. We studied available software and hardware tools for the robotics platform used in the experiments, as welI we developed test routines to determine their potentialities. Finally, we studied the behavior-based control model, we planned and implemented alI the necessary behaviors for the robot integration to the real and virtual cultural spaces. Several experiments were conducted, in order to validate the developed methodologies and tools

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of confinement of spinless particles in 1 + 1 dimensions is approached with a linear potential by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of confinement of fermions in 1 + 1 dimensions is approached with a linear potential in the Dirac equation by considering a mixing of Lorentz vector and scalar couplings. Analytical bound-states solutions are obtained when the scalar coupling is of sufficient intensity compared to the vector coupling. (C) 2002 Elsevier B.V. B.V. All rights reserved.