1000 resultados para Solda à laser
Resumo:
The Lau cavity is the self-imaging cavity with a phase corrector under the Lau reimaging condition. The author proposes the use of the Lau cavity to utilize both the Talbot and the Lau effects for phase locking one-dimensional and two-dimensional diode-laser arrays into a single-lobe coherent beam. Analyses on the self-reproducing of a coherent lasing field and the reimaging of initial incoherent radiation are given.
Resumo:
In this paper, we describe a wide-angle laser beam scanner and the rigorous result of the wide-angle laser beam scanner was obtained with the help of the vector refraction theory. Using the rigorous results, the distortion of the beam shape was discussed. The distortion of the beam shape is varying with the different relative angles of the double prisms. According to the conservation of the energy, the distribution of the laser intensity is changed too. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Experimental results of the Talbot effect of an amplitude grating under femtosecond laser illumination are reported. Compared with Talbot image under continuous wave (CW) illumination, Talbot images under femtosecond laser illumination are different due to the wide spectral bandwidth and the Talbot images are more distorted at longer Talbot distances. The spectrums and the pulsewidths of femtosecond laser pulses are measured with the frequency-resolved optical gating (FROG) apparatus. Experimental results are in good agreement with the theoretical analysis. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
When a Dammann grating is used to split a beam of femtosecond laser pulses into multiple equal-intensity beams, chromatic dispersion will occur in beams of each order of diffraction and with different scale of angular dispersion because the incident ultrashort pulse contains a broad range of spectral bandwidths. We propose a novel method in which the angular dispersion can be compensated by positioning an m-time-density grating to collimate the mth-order beam that has been split, producing an array of beams that are free of angular dispersion. The increased width of the compensated output pulses and the spectral walk-off effect are discussed. We have verified this approach theoretically and validated it through experiments. It should be highly interesting in practical applications of splitting femtosecond laser pulses for pulse-width measurement, pump-probe measurement, and micromachining at multiple points. (c) 2005 Optical Society of America.
Resumo:
The concept of femtosecond laser speckles is put forward. The theory of a speckle pattern in light of finite bandwidth is applied to describe femtosecond laser speckles. Basic representations of the contrast and the spectral correlation of femtosecond laser speckles are presented. The relationship between the speckle contrast and the bandwidth of a femtosecond laser is given. Experimental results are given that indicate an obvious difference between the speckle patterns produced by a continuous-wave laser and those produced by a femtosecond laser. (c) 2005 Optical Society of America
Resumo:
The interference patterns produced by Gaussian-shaped broad-bandwidth femtosecond pulsed laser sources are derived. The interference pattern contains both spatial and temporal properties of laser beam. Interference intensity dependent on the bandwidth of femtosecond laser are given. We demonstrate experimentally both the spatial and the temporal coherence properties of a Ti:sapphire femtosecond pulse laser, as well as its power spectrum by using a pinhole pair.
Resumo:
Theoretical and experimental studies of a gas laser amplifier are presented, assuming the amplifier is operating with a saturating optical frequency signal. The analysis is primarily concerned with the effects of the gas pressure and the presence of an axial magnetic field on the characteristics of the amplifying medium. Semiclassical radiation theory is used, along with a density matrix description of the atomic medium which relates the motion of single atoms to the macroscopic observables. A two-level description of the atom, using phenomenological source rates and decay rates, forms the basis of our analysis of the gas laser medium. Pressure effects are taken into account to a large extent through suitable choices of decay rate parameters.
Two methods for calculating the induced polarization of the atomic medium are used. The first method utilizes a perturbation expansion which is valid for signal intensities which barely reach saturation strength, and it is quite general in applicability. The second method is valid for arbitrarily strong signals, but it yields tractable solutions only for zero magnetic field or for axial magnetic fields large enough such that the Zeeman splitting is much larger than the power broadened homogeneous linewidth of the laser transition. The effects of pressure broadening of the homogeneous spectral linewidth are included in both the weak-signal and strong-signal theories; however the effects of Zeeman sublevel-mixing collisions are taken into account only in the weak-signal theory.
The behavior of a He-Ne gas laser amplifier in the presence of an axial magnetic field has been studied experimentally by measuring gain and Faraday rotation of linearly polarized resonant laser signals for various values of input signal intensity, and by measuring nonlinearity - induced anisotropy for elliptically polarized resonant laser signals of various input intensities. Two high-gain transitions in the 3.39-μ region were used for study: a J = 1 to J = 2 (3s2 → 3p4) transition and a J = 1 to J = 1 (3s2 → 3p2) transition. The input signals were tuned to the centers of their respective resonant gain lines.
The experimental results agree quite well with corresponding theoretical expressions which have been developed to include the nonlinear effects of saturation strength signals. The experimental results clearly show saturation of Faraday rotation, and for the J = 1 t o J = 1 transition a Faraday rotation reversal and a traveling wave gain dip are seen for small values of axial magnetic field. The nonlinearity induced anisotropy shows a marked dependence on the gas pressure in the amplifier tube for the J = 1 to J = 2 transition; this dependence agrees with the predictions of the general perturbational or weak signal theory when allowances are made for the effects of Zeeman sublevel-mixing collisions. The results provide a method for measuring the upper (neon 3s2) level quadrupole moment decay rate, the dipole moment decay rates for the 3s2 → 3p4 and 3s2 → 3p2 transitions, and the effects of various types of collision processes on these decay rates.
Resumo:
A highly uniform multiwavelength erbium-doped fiber ring laser with an intracavity sine phase modulator is demonstrated. The flat output spectrum is achieved by optimizing the cavity structure, modulation amplitude, and frequency of the sine phase modulator. Fifteen lasing lines with wavelength spacing of 0.9 nm appear simultaneously and stably with power differences less than 2 dB and side-mode suppression ratio higher than 32 dB. In addition, the proposed cavity can support unidirectional operation without optical isolators. An output power difference of about 20 dB is realized between the counterclockwise and clockwise directions, which is almost independent of the pump power and lasing wavelengths. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Thermal resistance and thermal rise-time are two basic parameters that affect most of the performances of a laser diode greatly. By measuring waveforms received after a spectroscope at wavelengths varied step-by-step, the spectrally resolved waveforms can be converted to calculate the thermal rise-time. Basic formulas for the spectrum variation of a laser diode and the measurement set-up by using a Boxcar are described in the paper. As an example, the thermal rise-time of a p-side up packaged short-pulse laser diode was measured by the method to be 390 mu s. The method will be useful in characterizing diode lasers and LID modules in high-power applications. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The gain of a transmitter for intersatellite communications is closely related to the performance of all the links. We calculate the transmitter telescope's gain with the help of the rigorous scalar diffraction theory and equivalent optical layout method. Furthermore, a comparison is performed with the conventional imaging method. The results show that the stop inside the telescope can affect the gain of the telescope. Finally, the gain is calculated under the condition of the aberrations. We find that different aberrations cause different effects. (C) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Based on electro-optic switch effect in crystal, a novel laser ranging method is proposed. CW-laser emitted by laser transmitter propagates forward to the measured target, after being reflected by the target, and then goes back to the transmitter. Close to the transmitter, a special mono-block LiNbO3 crystal is added into the round-trip light beams. High-voltage pulses with the sharp enough changes in rising edges are loaded on the crystal. Based on electro-optic effect, double refraction and internal double reflection effect in crystal, the crystal cuts off the round-trip light beams, and reflects a light pulse cut out by the crystal to a detector aside from the original beam path. The pulse width T is the period that laser propagates forward and back between the crystal and the target. The feasibility of the new idea is proved by our experiments and a brand-new way for the laser ranging is provided. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
We describe the rigorous results of a wide-angle laser beam scanner, obtained with the help of the vector refraction theory. Using the rigorous results, the distortion of the beam shape is discussed. The distortion to the beam varies with the different relative angles of double prisms. The scanner expands the beam in some directions while it contracts the beam in other directions. According to the conservation of energy, the distribution of the laser intensity is changed as well. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We have found that the optical power of a laser diode (LD) does not change with the injected light intensity that is modulated when its injection current is at some specific values. The amplitude of optical power change of the LD varies periodically with the increase of the injection current. It is made clear through theoretical analysis that these phenomena are caused by gain compression and interband carrier absorption of the LD that depend on longitudinal mode competition, bandgap-shrinkage effects, thermal conduction, and so on. Our experimental results make it easy to eliminate optical power change of LDs. We only need to choose a proper value of the injection current. (c) 2005 Optical Society of America.
Resumo:
In this paper, we present a simple technique to determine the coupling efficiency between a laser diode and a lensed-tip based on the ABCD transformation matrix method. We have compared our analysis technique to that of previous work and have found that the presented method is reliable in predicting the coupling efficiency of lensed-tip and has the advantage of simplicity of coupling efficiency calculation even by a pocket calculator. The results can be useful for designing coupling optics. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
A simple method for measuring the radius of curvature of laser beams is introduced. It has been developed to estimate the astigmatic aberration of a diode laser. Compared with the interferornetry, this method is convenient and straightforward. (c) 2005 Elsevier GmbH. All rights reserved.