951 resultados para Solar global irradiation
Resumo:
The adoption of the Declaration on the Rights of Indigenous Peoples (DRIP) by the United Nations General Assembly in September 2007 has been heralded by many as a major breakthrough in the promotion of Indigenous rights under international law. Many however are sceptical as to whether DRIP actually promotes Indigenous rights or rather limits them in ways that serve the interests of nation states thereby diminishing the universality of human rights with respect to Indigenous peoples. This paper will examine how shifts in global power from the United States to the BRIC nations (Brazil, Russia, India and China) are likely to impact on the realisation of the right of self determination for Indigenous peoples. It will start by outlining the right of self determination as articulated in the Declaration, and in particular how the United States and its allies - the CANZUS group (Canada, Australia, New Zealand and United States) - were influential in shaping its form and content. The paper will then assess the extent to which the right to self determination is realised in Australia, the United States and the BRJC nations to provide an indication of the likely future direction of recognition and realisation of Indigenous rights at a global level.
Resumo:
Custom designed for display on the Cube Installation situated in the new Science and Engineering Centre (SEC) at QUT, the ECOS project is a playful interface that uses real-time weather data to simulate how a five-star energy building operates in climates all over the world. In collaboration with the SEC building managers, the ECOS Project incorporates energy consumption and generation data of the building into an interactive simulation, which is both engaging to users and highly informative, and which invites play and reflection on the roles of green buildings. ECOS focuses on the principle that humans can have both a positive and negative impact on ecosystems with both local and global consequence. The ECOS project draws on the practice of Eco-Visualisation, a term used to encapsulate the important merging of environmental data visualization with the philosophy of sustainability. Holmes (2007) uses the term Eco-Visualisation (EV) to refer to data visualisations that ‘display the real time consumption statistics of key environmental resources for the goal of promoting ecological literacy’. EVs are commonly artifacts of interaction design, information design, interface design and industrial design, but are informed by various intellectual disciplines that have shared interests in sustainability. As a result of surveying a number of projects, Pierce, Odom and Blevis (2008) outline strategies for designing and evaluating effective EVs, including ‘connecting behavior to material impacts of consumption, encouraging playful engagement and exploration with energy, raising public awareness and facilitating discussion, and stimulating critical reflection.’ Consequently, Froehlich (2010) and his colleagues also use the term ‘Eco-feedback technology’ to describe the same field. ‘Green IT’ is another variation which Tomlinson (2010) describes as a ‘field at the juncture of two trends… the growing concern over environmental issues’ and ‘the use of digital tools and techniques for manipulating information.’ The ECOS Project team is guided by these principles, but more importantly, propose an example for how these principles may be achieved. The ECOS Project presents a simplified interface to the very complex domain of thermodynamic and climate modeling. From a mathematical perspective, the simulation can be divided into two models, which interact and compete for balance – the comfort of ECOS’ virtual denizens and the ecological and environmental health of the virtual world. The comfort model is based on the study of psychometrics, and specifically those relating to human comfort. This provides baseline micro-climatic values for what constitutes a comfortable working environment within the QUT SEC buildings. The difference between the ambient outside temperature (as determined by polling the Google Weather API for live weather data) and the internal thermostat of the building (as set by the user) allows us to estimate the energy required to either heat or cool the building. Once the energy requirements can be ascertained, this is then balanced with the ability of the building to produce enough power from green energy sources (solar, wind and gas) to cover its energy requirements. Calculating the relative amount of energy produced by wind and solar can be done by, in the case of solar for example, considering the size of panel and the amount of solar radiation it is receiving at any given time, which in turn can be estimated based on the temperature and conditions returned by the live weather API. Some of these variables can be altered by the user, allowing them to attempt to optimize the health of the building. The variables that can be changed are the budget allocated to green energy sources such as the Solar Panels, Wind Generator and the Air conditioning to control the internal building temperature. These variables influence the energy input and output variables, modeled on the real energy usage statistics drawn from the SEC data provided by the building managers.
Resumo:
Light trapping, due to the embedding of metallic nanoparticles, has been shown to be beneficial for a better photoabsorption in organic solar cells. Researchers in plasmonics and in the organic photovoltaics fields are working together to improve the absorption of sunlight and the photon–electron coupling to boost the performance of the devices. Recent advances in the field of plasmonics for organic solar cells focus on the incorporation of gold nanoparticles. This article reviews the different methods to produce and embed gold nanoparticles into organic solar cells. In particular, concentration, size and geometry of gold nanoparticles are key factors that directly influence the light absorption in the devices. It is shown that a careful choice of size, concentration and location of gold nanoparticles in the device result in an enhancement of the power conversion efficiencies when compared to standard organic solar cell devices. Our latest results on gold nanoparticles embedded in on organic solar cell devices are included. We demonstrate that embedded gold nanoparticles, created by depositing and annealing a gold film on transparent electrode, generate a plasmonic effect which can be exploited to increase the power conversion efficiency of a bulk heterojunction solar cell up to 10%.
Resumo:
This paper investigates the business cycle co-movement across countries and regions since 1950 as a measure for quantifying the economic interdependence in the ongoing globalisation process. Our methodological approach is based on analysis of a correlation matrix and the networks it contains. Such an approach summarises the interaction and interdependence of all elements, and it represents a more accurate measure of the global interdependence involved in an economic system. Our results show (1) the dynamics of interdependence has been driven more by synchronisation in regional growth patterns than by the synchronisation of the world economy, and (2) world crisis periods dramatically increase the global co-movement in the world economy.
Resumo:
This paper describes a generic and integrated solar powered remote Unmanned Air Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing system. The system uses a generic gas sensing system for CH4 and CO2 concentrations using metal oxide (MoX) and non-dispersive infrared sensors, and a new solar cell encapsulation method to power the UASs as well as a data management platform to store, analyse and share the information with operators and external users. The system was successfully field tested at ground and low altitudes, collecting, storing and transmitting data in real time to a central node for analysis and 3D mapping. The system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, opening the way to a ubiquitous low cost environmental monitoring. A video of the bench and flight test performed can be seen in the following link https://www.youtube.com/watch?v=Bwas7stYIxQ.
Resumo:
Few would argue that the upstream oil & gas industry has become more technology-intensive over the years. But how does innovation happen in the industry? Specifically, what ideas and inputs flow from which parts of the sector’s value network, and where do these inputs go? And how do firms and organizations from different countries contribute differently to this process? This paper puts forward the results of a survey designed to shed light on these issues. A joint research initiative between the Society of Petroleum Engineers and the Queensland University of Technology, the survey was sent to 469 executives and senior managers who played a significant role with regards to R&D and/or technology deployment in their respective business units. A total of 199 responses were received from a broad range of organizations and countries around the world. Several interesting themes and trends emerge from the results, including: (1) service companies tend to file considerably more patents per innovation than other types of organization; (2) over 63% of the deployed innovations reported in the survey originated in service companies; (3) neither universities nor government-led research organizations are considered to be valuable sources of new information and knowledge in the industry’s R&D initiatives; and (4) despite the increasing degree of globalization in the marketplace, the USA still plays an extremely dominant role in the industry’s overall R&D and technology deployment activities. By providing a detailed snapshot of how innovation happens in the upstream oil & gas sector, this paper provides a valuable foundation for future investigations and discussions aimed at improving how R&D and technology deployment are managed within the industry.
Resumo:
Double-pass counter flow v-grove collector is considered one of the most efficient solar air-collectors. In this design of the collector, the inlet air initially flows at the top part of the collector and changes direction once it reaches the end of the collector and flows below the collector to the outlet. A mathematical model is developed for this type of collector and simulation is carried out using MATLAB programme. The simulation results were verified with three distinguished research results and it was found that the simulation has the ability to predict the performance of the air collector accurately as proven by the comparison of experimental data with simulation. The difference between the predicted and experimental results is, at maximum, approximately 7% which is within the acceptable limit considering some uncertainties in the input parameter values to allow comparison. A parametric study was performed and it was found that solar radiation, inlet air temperature, flow rate and length have a significant effect on the efficiency of the air collector. Additionally, the results are compared with single flow V-groove collector.
Resumo:
Indigenous studies in First World nation states such as Australia, Canada, New Zealand, the United States of America and Hawaii, appear to have acquired the status of a discipline, although the accounts of its formation vary. Indigenous studies is formally recognised as part of university curricula in these countries and is included in inter‐disciplinary contexts and degree programs or is offered as a program and a degree in its own right. Indigenous scholarship is being published in unprecedented numbers with publishing houses competing for manuscripts. Indigenous studies journals have proliferated having emerged in the 1970s though most were, and continue to be, edited by non‐Indigenous people. In addition, Indigenous studies professional associations have been established organising research related activities as well as convening conferences to enable intellectual engagement and the formation of national and international networks. The nature and extent of this institutionalisation and the conditions of existence, though often marginalised and under resourced, may allude to the coherence of Indigenous Studies as a discipline with global reach but what remains unclear are its epistemological boundaries and the degree to which it perpetuates cultural entrapment . This paper will reflect on some of these epistemological matters.
Resumo:
International agreement on the framework for protecting the rights of Indigenous populations within nation states has occurred alongside unprecedented levels of globalisation of other previously nation-based activities such as economic and social provision and planning. As the idea of the postcolonial democratic state emerges, this collection undertakes an international and comparative examination of the role of higher education in educating globally aware professionals who are able to work effectively and in cultural safety with Indigenous Peoples...
Resumo:
In this paper, teachers’ enactment of assessment policy within demands for accountability and consistency of teacher judgements is considered. Evidence is drawn from a qualitative study involving 50 middle school teachers from Queensland, Australia, who participated in online social moderation meetings with teachers located in dispersed areas around the state. The study presents how travelling policy is embedded in local histories and cultures, in particular within systems of accountability; and the different layers of what may be considered ‘local’. The paper examines the intersections of travelling and embedded policy, and global and local contexts as these are enacted through online moderation meetings.
Resumo:
Current governance challenges facing the global games industry are heavily dominated by online games. Whilst much academic and industry attention has been afforded to Virtual Worlds, the more pressing contemporary challenges may arise in casual games, especially when found on social networks. As authorities are faced with an increasing volume of disputes between participants and platform operators, the likelihood of external regulation increases, and the role that such regulation would have on the industry – both internationally and within specific regions – is unclear. Kelly (2010) argues that “when you strip away the graphics of these [social] games, what you are left with is simply a button [...] You push it and then the game returns a value of either Win or Lose”. He notes that while “every game developer wants their game to be played, preferably addictively, because it’s so awesome”, these mechanics lead not to “addiction of engagement through awesomeness” but “the addiction of compulsiveness”, surmising that “the reality is that they’ve actually sort-of kind-of half-intentionally built a virtual slot machine industry”. If such core elements of social game design are questioned, this gives cause to question the real-money options to circumvent them. With players able to purchase virtual currency and speed the completion of tasks, the money invested by the 20% purchasing in-game benefits (Zainwinger, 2012) may well be the result of compulsion. The decision by the Japanese Consumer Affairs agency to investigate the ‘Kompu Gacha’ mechanic (in which players are rewarded for completing a set of items obtained through purchasing virtual goods such as mystery boxes), and the resultant verdict that such mechanics should be regulated through gambling legislation, demonstrates that politicians are beginning to look at the mechanics deployed in these environments. Purewal (2012) states that “there’s a reasonable argument that complete gacha would be regulated under gambling law under at least some (if not most) Western jurisdictions”. This paper explores the governance challenged within these games and platforms, their role in the global industry, and current practice amongst developers in the Australian and United States to address such challenges.
Resumo:
This paper focuses on Australian development firms in the console and mobile games industry in order to understand how small firms in a geographically remote and marginal position in the global industry are able to relate to global firms and capture revenue share. This paper shows that, while technological change in the games industry has resulted in the emergence of new industry segments based on transactional rather than relational forms of economic coordination, in which we might therefore expect less asymmetrical power relations, lead firms retain a position of power in the global games entertainment industry relative to remote developers. This has been possible because lead firms in the emerging mobile devices market have developed and sustained bottlenecks in their segment of the industry through platform competition and the development of an intensely competitive ecosystem of developers. Our research shows the critical role of platform competition and bottlenecks in influencing power asymmetries within global markets.
Resumo:
Global awareness for cleaner and renewable energy is transforming the electricity sector at many levels. New technologies are being increasingly integrated into the electricity grid at high, medium and low voltage levels, new taxes on carbon emissions are being introduced and individuals can now produce electricity, mainly through rooftop photovoltaic (PV) systems. While leading to improvements, these changes also introduce challenges, and a question that often rises is ‘how can we manage this constantly evolving grid?’ The Queensland Government and Ergon Energy, one of the two Queensland distribution companies, have partnered with some Australian and German universities on a project to answer this question in a holistic manner. The project investigates the impact the integration of renewables and other new technologies has on the physical structure of the grid, and how this evolving system can be managed in a sustainable and economical manner. To aid understanding of what the future might bring, a software platform has been developed that integrates two modelling techniques: agent-based modelling (ABM) to capture the characteristics of the different system units accurately and dynamically, and particle swarm optimization (PSO) to find the most economical mix of network extension and integration of distributed generation over long periods of time. Using data from Ergon Energy, two types of networks (3 phase, and Single Wired Earth Return or SWER) have been modelled; three-phase networks are usually used in dense networks such as urban areas, while SWER networks are widely used in rural Queensland. Simulations can be performed on these networks to identify the required upgrades, following a three-step process: a) what is already in place and how it performs under current and future loads, b) what can be done to manage it and plan the future grid and c) how these upgrades/new installations will perform over time. The number of small-scale distributed generators, e.g. PV and battery, is now sufficient (and expected to increase) to impact the operation of the grid, which in turn needs to be considered by the distribution network manager when planning for upgrades and/or installations to stay within regulatory limits. Different scenarios can be simulated, with different levels of distributed generation, in-place as well as expected, so that a large number of options can be assessed (Step a). Once the location, sizing and timing of assets upgrade and/or installation are found using optimisation techniques (Step b), it is possible to assess the adequacy of their daily performance using agent-based modelling (Step c). One distinguishing feature of this software is that it is possible to analyse a whole area at once, while still having a tailored solution for each of the sub-areas. To illustrate this, using the impact of battery and PV can have on the two types of networks mentioned above, three design conditions can be identified (amongst others): · Urban conditions o Feeders that have a low take-up of solar generators, may benefit from adding solar panels o Feeders that need voltage support at specific times, may be assisted by installing batteries · Rural conditions - SWER network o Feeders that need voltage support as well as peak lopping may benefit from both battery and solar panel installations. This small example demonstrates that no single solution can be applied across all three areas, and there is a need to be selective in which one is applied to each branch of the network. This is currently the function of the engineer who can define various scenarios against a configuration, test them and iterate towards an appropriate solution. Future work will focus on increasing the level of automation in identifying areas where particular solutions are applicable.