959 resultados para Smart Vending Machine, Automation, Programmable Logic Controllers, Creativity, Innovation
Resumo:
This work deals with the cooling of high-speed electric machines, such as motors and generators, through an air gap. It consists of numerical and experimental modelling of gas flow and heat transfer in an annular channel. Velocity and temperature profiles are modelled in the air gap of a high-speed testmachine. Local and mean heat transfer coefficients and total friction coefficients are attained for a smooth rotor-stator combination at a large velocity range. The aim is to solve the heat transfer numerically and experimentally. The FINFLO software, developed at Helsinki University of Technology, has been used in the flow solution, and the commercial IGG and Field view programs for the grid generation and post processing. The annular channel is discretized as a sector mesh. Calculation is performed with constant mass flow rate on six rotational speeds. The effect of turbulence is calculated using three turbulence models. The friction coefficient and velocity factor are attained via total friction power. The first part of experimental section consists of finding the proper sensors and calibrating them in a straight pipe. After preliminary tests, a RdF-sensor is glued on the walls of stator and rotor surfaces. Telemetry is needed to be able to measure the heat transfer coefficients at the rotor. The mean heat transfer coefficients are measured in a test machine on four cooling air mass flow rates at a wide Couette Reynolds number range. The calculated values concerning the friction and heat transfer coefficients are compared with measured and semi-empirical data. Heat is transferred from the hotter stator and rotor surfaces to the coolerair flow in the air gap, not from the rotor to the stator via the air gap, althought the stator temperature is lower than the rotor temperature. The calculatedfriction coefficients fits well with the semi-empirical equations and precedingmeasurements. On constant mass flow rate the rotor heat transfer coefficient attains a saturation point at a higher rotational speed, while the heat transfer coefficient of the stator grows uniformly. The magnitudes of the heat transfer coefficients are almost constant with different turbulence models. The calibrationof sensors in a straight pipe is only an advisory step in the selection process. Telemetry is tested in the pipe conditions and compared to the same measurements with a plain sensor. The magnitudes of the measured data and the data from the semi-empirical equation are higher for the heat transfer coefficients than thenumerical data considered on the velocity range. Friction and heat transfer coefficients are presented in a large velocity range in the report. The goals are reached acceptably using numerical and experimental research. The next challenge is to achieve results for grooved stator-rotor combinations. The work contains also results for an air gap with a grooved stator with 36 slots. The velocity field by the numerical method does not match in every respect the estimated flow mode. The absence of secondary Taylor vortices is evident when using time averagednumerical simulation.
Resumo:
In order that the radius and thus ununiform structure of the teeth and otherelectrical and magnetic parts of the machine may be taken into consideration the calculation of an axial flux permanent magnet machine is, conventionally, doneby means of 3D FEM-methods. This calculation procedure, however, requires a lotof time and computer recourses. This study proves that also analytical methods can be applied to perform the calculation successfully. The procedure of the analytical calculation can be summarized into following steps: first the magnet is divided into slices, which makes the calculation for each section individually, and then the parts are submitted to calculation of the final results. It is obvious that using this method can save a lot of designing and calculating time. Thecalculation program is designed to model the magnetic and electrical circuits of surface mounted axial flux permanent magnet synchronous machines in such a way, that it takes into account possible magnetic saturation of the iron parts. Theresult of the calculation is the torque of the motor including the vibrations. The motor geometry and the materials and either the torque or pole angle are defined and the motor can be fed with an arbitrary shape and amplitude of three-phase currents. There are no limits for the size and number of the pole pairs nor for many other factors. The calculation steps and the number of different sections of the magnet are selectable, but the calculation time is strongly depending on this. The results are compared to the measurements of real prototypes. The permanent magnet creates part of the flux in the magnetic circuit. The form and amplitude of the flux density in the air-gap depends on the geometry and material of the magnetic circuit, on the length of the air-gap and remanence flux density of the magnet. Slotting is taken into account by using the Carter factor in the slot opening area. The calculation is simple and fast if the shape of the magnetis a square and has no skew in relation to the stator slots. With a more complicated magnet shape the calculation has to be done in several sections. It is clear that according to the increasing number of sections also the result will become more accurate. In a radial flux motor all sections of the magnets create force with a same radius. In the case of an axial flux motor, each radial section creates force with a different radius and the torque is the sum of these. The magnetic circuit of the motor, consisting of the stator iron, rotor iron, air-gap, magnet and the slot, is modelled with a reluctance net, which considers the saturation of the iron. This means, that several iterations, in which the permeability is updated, has to be done in order to get final results. The motor torque is calculated using the instantaneous linkage flux and stator currents. Flux linkage is called the part of the flux that is created by the permanent magnets and the stator currents passing through the coils in stator teeth. The angle between this flux and the phase currents define the torque created by the magnetic circuit. Due to the winding structure of the stator and in order to limit the leakage flux the slot openings of the stator are normally not made of ferromagnetic material even though, in some cases, semimagnetic slot wedges are used. In the slot opening faces the flux enters the iron almost normally (tangentially with respect to the rotor flux) creating tangential forces in the rotor. This phenomenon iscalled cogging. The flux in the slot opening area on the different sides of theopening and in the different slot openings is not equal and so these forces do not compensate each other. In the calculation it is assumed that the flux entering the left side of the opening is the component left from the geometrical centre of the slot. This torque component together with the torque component calculated using the Lorenz force make the total torque of the motor. It is easy to assume that when all the magnet edges, where the derivative component of the magnet flux density is at its highest, enter the slot openings at the same time, this will have as a result a considerable cogging torque. To reduce the cogging torquethe magnet edges can be shaped so that they are not parallel to the stator slots, which is the common way to solve the problem. In doing so, the edge may be spread along the whole slot pitch and thus also the high derivative component willbe spread to occur equally along the rotation. Besides forming the magnets theymay also be placed somewhat asymmetric on the rotor surface. The asymmetric distribution can be made in many different ways. All the magnets may have a different deflection of the symmetrical centre point or they can be for example shiftedin pairs. There are some factors that limit the deflection. The first is that the magnets cannot overlap. The magnet shape and the relative width compared to the pole define the deflection in this case. The other factor is that a shifting of the poles limits the maximum torque of the motor. If the edges of adjacent magnets are very close to each other the leakage flux from one pole to the other increases reducing thus the air-gap magnetization. The asymmetric model needs some assumptions and simplifications in order to limit the size of the model and calculation time. The reluctance net is made for symmetric distribution. If the magnets are distributed asymmetrically the flux in the different pole pairs will not be exactly the same. Therefore, the assumption that the flux flows from the edges of the model to the next pole pairs, in the calculation model from one edgeto the other, is not correct. If it were wished for that this fact should be considered in multi-pole pair machines, this would mean that all the poles, in other words the whole machine, should be modelled in reluctance net. The error resulting from this wrong assumption is, nevertheless, irrelevant.
Resumo:
Fuzzy set theory and Fuzzy logic is studied from a mathematical point of view. The main goal is to investigatecommon mathematical structures in various fuzzy logical inference systems and to establish a general mathematical basis for fuzzy logic when considered as multi-valued logic. The study is composed of six distinct publications. The first paper deals with Mattila'sLPC+Ch Calculus. THis fuzzy inference system is an attempt to introduce linguistic objects to mathematical logic without defining these objects mathematically.LPC+Ch Calculus is analyzed from algebraic point of view and it is demonstratedthat suitable factorization of the set of well formed formulae (in fact, Lindenbaum algebra) leads to a structure called ET-algebra and introduced in the beginning of the paper. On its basis, all the theorems presented by Mattila and many others can be proved in a simple way which is demonstrated in the Lemmas 1 and 2and Propositions 1-3. The conclusion critically discusses some other issues of LPC+Ch Calculus, specially that no formal semantics for it is given.In the second paper the characterization of solvability of the relational equation RoX=T, where R, X, T are fuzzy relations, X the unknown one, and o the minimum-induced composition by Sanchez, is extended to compositions induced by more general products in the general value lattice. Moreover, the procedure also applies to systemsof equations. In the third publication common features in various fuzzy logicalsystems are investigated. It turns out that adjoint couples and residuated lattices are very often present, though not always explicitly expressed. Some minor new results are also proved.The fourth study concerns Novak's paper, in which Novak introduced first-order fuzzy logic and proved, among other things, the semantico-syntactical completeness of this logic. He also demonstrated that the algebra of his logic is a generalized residuated lattice. In proving that the examination of Novak's logic can be reduced to the examination of locally finite MV-algebras.In the fifth paper a multi-valued sentential logic with values of truth in an injective MV-algebra is introduced and the axiomatizability of this logic is proved. The paper developes some ideas of Goguen and generalizes the results of Pavelka on the unit interval. Our proof for the completeness is purely algebraic. A corollary of the Completeness Theorem is that fuzzy logic on the unit interval is semantically complete if, and only if the algebra of the valuesof truth is a complete MV-algebra. The Compactness Theorem holds in our well-defined fuzzy sentential logic, while the Deduction Theorem and the Finiteness Theorem do not. Because of its generality and good-behaviour, MV-valued logic can be regarded as a mathematical basis of fuzzy reasoning. The last paper is a continuation of the fifth study. The semantics and syntax of fuzzy predicate logic with values of truth in ana injective MV-algerba are introduced, and a list of universally valid sentences is established. The system is proved to be semanticallycomplete. This proof is based on an idea utilizing some elementary properties of injective MV-algebras and MV-homomorphisms, and is purely algebraic.
Resumo:
OBJECTIVES: Regarding recent progress, musculoskeletal ultrasound (US) will probably soon be integrated in standard care of patient with rheumatoid arthritis (RA). However, in daily care, quality of US machines and level of experience of sonographers are varied. We conducted a study to assess reproducibility and feasibility of an US scoring for RA, including US devices of different quality and rheumatologist with various levels of expertise in US as it would be in daily care. METHODS: The Swiss Sonography in Arthritis and Rheumatism (SONAR) group has developed a semi-quantitative score using OMERACT criteria for synovitis and erosion in RA. The score was taught to 108 rheumatologists trained in US. One year after the last workshop, 19 rheumatologists participated in the study. Scans were performed on 6 US machines ranging from low to high quality, each with a different patient. Weighted kappa was calculated for each pair of readers. RESULTS: Overall, the agreement was fair to moderate. Quality of device, experience of the sonographers and practice of the score before the study improved substantially the agreement. Agreement assessed on higher quality machine, among sonographers with good experience in US increased to substantial (median kappa for B-mode and Doppler: 0.64 and 0.41 for erosion). CONCLUSIONS: This study demonstrated feasibility and reproducibility of the Swiss US SONAR score for RA. Our results confirmed importance of the quality of US machine and the training of sonographers for the implementation of US scoring in the routine daily care of RA.
Resumo:
World Wide Webin suosiolla on ollut merkittävä vaikutus yhteiskuntaan. WWW-sivut ovat helposti saatavilla ja sisällön tekeminen WWW:hen on helppoa. WWW-ympäristölle myös kehitetään paljon sovelluksia. WWW-sovellusten kehittämiselle ominaista on valinnanvapaus ja nopeuden tavoittelu. WWW-sovellusten ohjelmoinnin mahdollistavat useat toisilleen vaihtoehtoiset tekniikat. Ne eroavat toisistaan suoritusnopeudessa, ominaisuuksien määrässä ja joustavuudessa. Ohjelmoinnissa käytetään apuna useita erilaisia menetelmiä. Apumenetelmiä ovat muun muassa työkalut ja valmiiden komponenttien hyödyntäminen. Valmiit komponentit voivat olla joko ilmaisia, avointa lähdekoodia tai maksullisia. Tämän kandidaatintyön aikana valmistui sovellus, joka piirtää tilastotiedoista kaaviokuvia ja näyttää niitä dynaamisella WWW-sivulla. Sovellus pyrittiin toteuttamaan älykkäästi apumenetelmiä sopivasti hyödyntäen. Sovelluksen kehittämisessä käytettiin apuna sekä ohjelmointityökaluja että valmiita komponentteja. Kaaviokuvien tyypin ja ulkoasun haluttiin olevan käyttäjien muokattavissa. Toisaalta sovelluksen haluttiin olevan helposti laajennettavissa. Vaatimuksiin vastattiin tekemällä kaaviokuvien piirrosta osittain tietokannalla ohjelmoitava.
Resumo:
The need for high performance, high precision, and energy saving in rotating machinery demands an alternative solution to traditional bearings. Because of the contactless operation principle, the rotating machines employing active magnetic bearings (AMBs) provide many advantages over the traditional ones. The advantages such as contamination-free operation, low maintenance costs, high rotational speeds, low parasitic losses, programmable stiffness and damping, and vibration insulation come at expense of high cost, and complex technical solution. All these properties make the use of AMBs appropriate primarily for specific and highly demanding applications. High performance and high precision control requires model-based control methods and accurate models of the flexible rotor. In turn, complex models lead to high-order controllers and feature considerable computational burden. Fortunately, in the last few years the advancements in signal processing devices provide new perspective on the real-time control of AMBs. The design and the real-time digital implementation of the high-order LQ controllers, which focus on fast execution times, are the subjects of this work. In particular, the control design and implementation in the field programmable gate array (FPGA) circuits are investigated. The optimal design is guided by the physical constraints of the system for selecting the optimal weighting matrices. The plant model is complemented by augmenting appropriate disturbance models. The compensation of the force-field nonlinearities is proposed for decreasing the uncertainty of the actuator. A disturbance-observer-based unbalance compensation for canceling the magnetic force vibrations or vibrations in the measured positions is presented. The theoretical studies are verified by the practical experiments utilizing a custom-built laboratory test rig. The test rig uses a prototyping control platform developed in the scope of this work. To sum up, the work makes a step in the direction of an embedded single-chip FPGA-based controller of AMBs.
Resumo:
PLFC is a first-order possibilistic logic dealing with fuzzy constants and fuzzily restricted quantifiers. The refutation proof method in PLFC is mainly based on a generalized resolution rule which allows an implicit graded unification among fuzzy constants. However, unification for precise object constants is classical. In order to use PLFC for similarity-based reasoning, in this paper we extend a Horn-rule sublogic of PLFC with similarity-based unification of object constants. The Horn-rule sublogic of PLFC we consider deals only with disjunctive fuzzy constants and it is equipped with a simple and efficient version of PLFC proof method. At the semantic level, it is extended by equipping each sort with a fuzzy similarity relation, and at the syntactic level, by fuzzily “enlarging” each non-fuzzy object constant in the antecedent of a Horn-rule by means of a fuzzy similarity relation.
Resumo:
Possibilistic Defeasible Logic Programming (P-DeLP) is a logic programming language which combines features from argumentation theory and logic programming, incorporating the treatment of possibilistic uncertainty at the object-language level. In spite of its expressive power, an important limitation in P-DeLP is that imprecise, fuzzy information cannot be expressed in the object language. One interesting alternative for solving this limitation is the use of PGL+, a possibilistic logic over Gödel logic extended with fuzzy constants. Fuzzy constants in PGL+ allow expressing disjunctive information about the unknown value of a variable, in the sense of a magnitude, modelled as a (unary) predicate. The aim of this article is twofold: firstly, we formalize DePGL+, a possibilistic defeasible logic programming language that extends P-DeLP through the use of PGL+ in order to incorporate fuzzy constants and a fuzzy unification mechanism for them. Secondly, we propose a way to handle conflicting arguments in the context of the extended framework.
Resumo:
In the last decade defeasible argumentation frameworks have evolved to become a sound setting to formalize commonsense, qualitative reasoning. The logic programming paradigm has shown to be particularly useful for developing different argument-based frameworks on the basis of different variants of logic programming which incorporate defeasible rules. Most of such frameworks, however, are unable to deal with explicit uncertainty, nor with vague knowledge, as defeasibility is directly encoded in the object language. This paper presents Possibilistic Logic Programming (P-DeLP), a new logic programming language which combines features from argumentation theory and logic programming, incorporating as well the treatment of possibilistic uncertainty. Such features are formalized on the basis of PGL, a possibilistic logic based on G¨odel fuzzy logic. One of the applications of P-DeLP is providing an intelligent agent with non-monotonic, argumentative inference capabilities. In this paper we also provide a better understanding of such capabilities by defining two non-monotonic operators which model the expansion of a given program P by adding new weighed facts associated with argument conclusions and warranted literals, respectively. Different logical properties for the proposed operators are studied
Resumo:
Els stents són unes pròtesis endovasculars. L’objectiu del projecte és el disseny i desenvolupament d’un utillatge que permeti la seva fabricació per tall làser. S’utilitzarà el làser del GREP (Grup de Recerca en Enginyeria de Producte, Procés i Producció) de la Universitat de Girona, el qual està instal•lat sobre el capçal d’un centre de mecanitzat convencional
Resumo:
Treball de final de carrera que consisteix en una aplicació per a mòbils que connecta el servei REST amb un servidor.
Resumo:
Psychophysical studies suggest that humans preferentially use a narrow band of low spatial frequencies for face recognition. Here we asked whether artificial face recognition systems have an improved recognition performance at the same spatial frequencies as humans. To this end, we estimated recognition performance over a large database of face images by computing three discriminability measures: Fisher Linear Discriminant Analysis, Non-Parametric Discriminant Analysis, and Mutual Information. In order to address frequency dependence, discriminabilities were measured as a function of (filtered) image size. All three measures revealed a maximum at the same image sizes, where the spatial frequency content corresponds to the psychophysical found frequencies. Our results therefore support the notion that the critical band of spatial frequencies for face recognition in humans and machines follows from inherent properties of face images, and that the use of these frequencies is associated with optimal face recognition performance.
Resumo:
Kustannuspaineet, tuotteiden laatuvaatimukset ja lisääntyvässä määrin myös ammattitaitoisen työvoiman pula lisäävät robotisoinnin käyttötarvetta hitsauksessa. Tämä työ on tehty edellä mainituista lähtökohdista ja käsittelee robottihitsausjärjestelmän suunnitteluprojektia, joustavaa hitsausautomaatiota ja robotiikan soveltamista. Näkökohtana on Savonia-ammattikorkeakoulun sekä Pohjois-Savon alueen yritysten tutkimus-, kehitys- ja koulutustoiminnan tarpeet. Joustavuus on hitsausjärjestelmän päätavoite, jolla pyritään vastaamaan asiakasohjautuvan yksittäis- ja piensarjatuotannon haasteisiin. Ratkaisua yksittäis- ja piensarjatuotteiden kokonaistaloudelliseen hitsaukseen on haettu hitsausrobotin rinnalle lisätyllä apurobotilla, jonka päätehtävä on kappaleenkäsittely, mutta sitä voidaan käyttää myös mm. robotisoituun leikkauksen ja särmäykseen. Tavallisuudesta poikkeavaa järjestelmäratkaisua on perusteltu sillä, että ohjaus- ja ohjelmointitekniikan sekä kehittyneen anturoinnin myötä on robottien käytettävyys parantunut ja aiempaa haasteellisempien robottijärjestelmien toteuttaminen on tullut näin mahdolliseksi. Lisäksi virtuaalimallinnus, simulointi ja etäohjelmointi ovat työkaluja, joita voidaan käyttää mm. tuotannon laadun ja tehokkuuden parantamiseen. Työssä esitetty robottiaseman suunnittelu alkaa järjestelmän määrittelystä, vaatimuslistan laadinnasta sekä visioinnista ja päättyy kolmen järjestelmävaihtoehdon vertailuun. Esitetyillä järjestelmävaihtoehdoilla on haettu mahdollisuutta yhdistää yleensä erillisinä toteutettuja työvaiheita yhteiseen soluun. Tuotannon joustavuus on ollut tuotantokapasiteettia tärkeämpi laitteistokokoonpanon valintaperuste.
Resumo:
This thesis gives an overview of the use of the level set methods in the field of image science. The similar fast marching method is discussed for comparison, also the narrow band and the particle level set methods are introduced. The level set method is a numerical scheme for representing, deforming and recovering structures in an arbitrary dimensions. It approximates and tracks the moving interfaces, dynamic curves and surfaces. The level set method does not define how and why some boundary is advancing the way it is but simply represents and tracks the boundary. The principal idea of the level set method is to represent the N dimensional boundary in the N+l dimensions. This gives the generality to represent even the complex boundaries. The level set methods can be powerful tools to represent dynamic boundaries, but they can require lot of computing power. Specially the basic level set method have considerable computational burden. This burden can be alleviated with more sophisticated versions of the level set algorithm like the narrow band level set method or with the programmable hardware implementation. Also the parallel approach can be used in suitable applications. It is concluded that these methods can be used in a quite broad range of image applications, like computer vision and graphics, scientific visualization and also to solve problems in computational physics. Level set methods and methods derived and inspired by it will be in the front line of image processing also in the future.