973 resultados para Skew fields
A combined wavelet-element free Galerkin method for numerical calculations of electromagnetic fields
Resumo:
A combined wavelet-element free Galerkin (EFG) method is proposed for solving electromagnetic EM) field problems. The bridging scales are used to preserve the consistency and linear independence properties of the entire bases. A detailed description of the development of the discrete model and its numerical implementations is given to facilitate the reader to. understand the proposed algorithm. A numerical example to validate the proposed method is also reported.
Resumo:
Field-dependent conductivity at low electric fields was observed from low to room temperature in pressed pellets of doped poly(3-methylthiophene). The room temperature data showed good agreement with Bardeen's theory of charge-density wave depinning and the values of the parameters obtained are consistent with a strong electron-phonon interaction as expected for quasi-one dimensional systems. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The use of master actions to prove duality at quantum level becomes cumbersome if one of the dual fields interacts nonlinearly with other fields. This is the case of the theory considered here consisting of U(1) scalar fields coupled to a self-dual field through a linear and a quadratic term in the self-dual field. Integrating perturbatively over the scalar fields and deriving effective actions for the self-dual and the gauge field we are able to consistently neglect awkward extra terms generated via master action and establish quantum duality up to cubic terms in the coupling constant. The duality holds for the partition function and some correlation functions. The absence of ghosts imposes restrictions on the coupling with the scalar fields.
Resumo:
We study the dynamics of a class of reversible vector fields having eigenvalues (0, alphai, -alphai) around their symmetric equilibria. We give a complete list of all normal forms for such vector fields, their versal unfoldings, and the corresponding bifurcation diagrams of the codimensional-one case. We also obtain some important conclusions on the existence of homoclinic and heteroclinic orbits, invariant tori and symmetric periodic orbits.
Resumo:
The objective of this work was to model and diagnose the spatial variability of soil load support capacity (SLSC) in sugar cane crop fields, as well as to evaluate the management impact on São Paulo State soil structure. The investigated variables were: pressure preconsolidation (sigma(p)), apparent cohesion () and internal friction angle (). The conclusions from the results were that the models and spatial dependence maps constitute important tools in the prediction and location of the mechanical internal strength of soils cultivated with sugar cane. They will help future soil management decisions so that soil structure sustainability will not be compromised.
Resumo:
The evolution of the energy states of the phosphorous donor in silicon with magnetic field has been the subject of previous experimental and theoretical studies to fields of 10 T. We now present experimental optical absorption data to 18 T in combination with theoretical data to the same field. We observe features that are not revealed in the earlier work, including additional interactions and anti-crossings between the different final states. For example, according to the theory, for the "1s -> 2p (+)" transition, there are anti-crossings at about 5, 10, 14, 16, and 18 T. In the experiments, we resolve at least the 5, 10, and 14 T anti-crossings, and our data at 16 and 18 T are consistent with the calculations.
Resumo:
The anisotropy of the effective Lande factor in Al(x)Gal(1-x)As parabolic quantum wells under magnetic fields is theoretically investigated. The non-parabolicity and anisotropy of the conduction band are taken into account through the Ogg-McCombe Hamiltonian together with the cubic Dresselhaus spin-orbit term. The calculated effective g factor is larger when the magnetic field is applied along the growth direction. As the well widens, its anisotropy increases sharply and then decreases slowly. For the considered field strengths, the anisotropy is maximum for a well width similar to 50 angstrom. Moreover, this anisotropy increases with the field strength and the maximum value of the aluminum concentration within the quantum well. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigate in this paper the topological stability of pairs (omega, X), where w is a germ of an integrable 1-form and X is a germ of a vector field tangent to the foliation determined by omega.
Resumo:
The construction of Lie algebras in terms of Jordan algebra generators is discussed. The key to the construction is the triality relation already incorporated into matrix products. A generalisation to Kac-Moody algebras in terms of vertex operators is proposed and may provide a clue for the construction of new representations of Kac-Moody algebras in terms of Jordan fields. © 1988.
Resumo:
A construction relating the structures of super Lie and super Jordan algebras is proposed. This may clarify the role played by field theoretical realizations of super Jordan algebras in constructing representations of super Kač-Moody algebras. The case of OSP(m, n) and super Clifford algebras involving independent Fermi fields and symplectic bosons is discussed in detail.
Resumo:
We investigate higher grading integrable generalizations of the affine Toda systems, where the flat connections defining the models take values in eigensubspaces of an integral gradation of an affine Kac-Moody algebra, with grades varying from l to -l (l > 1). The corresponding target space possesses nontrivial vacua and soliton configurations, which can be interpreted as particles of the theory, on the same footing as those associated to fundamental fields. The models can also be formulated by a hamiltonian reduction procedure from the so-called two-loop WZNW models. We construct the general solution and show the classes corresponding to the solitons. Some of the particles and solitons become massive when the conformal symmetry is spontaneously broken by a mechanism with an intriguing topological character and leading to a very simple mass formula. The massive fields associated to nonzero grade generators obey field equations of the Dirac type and may be regarded as matter fields. A special class of models is remarkable. These theories possess a U(1 ) Noether current, which, after a special gauge fixing of the conformal symmetry, is proportional to a topological current. This leads to the confinement of the matter field inside the solitons, which can be regarded as a one-dimensional bag model for QCD. These models are also relevant to the study of electron self-localization in (quasi-)one-dimensional electron-phonon systems.
Resumo:
Over the last quarter century, Petrobras has continually developed tools, techniques and methods to predict and to deal with organic deposition problems in offshore fields.