847 resultados para Seamless transition
Resumo:
The computer simulation method has been used to study the structural formation and transition of electro-magneto-rheological (EMR) fluids under compatible electric and magnetic fields. When the fields are applied simultaneously and perpendicularly to each other, the particles rapidly arrange into two-dimensional close-packed layer structures parallel to both fields. The layers then combine together to form thicker sheet-like structures, which finally relax into three-dimensional close-packed structures with the help of the thermal fluctuations. On the other hand, if the electric field is applied firstly to induce the body-centered tetragonal (BCT) columns in the system, and then the magnetic field is applied in the perpendicular direction. the BCT to face-centered cubic (FCC) structure transition is observed in very short time. Following that. the structure keeps on evolving due to the demagnetization effect and finally form the three-dimensional close-packed structures.
Resumo:
A computer simulation method has been used to study the three-dimensional structural formation and transition of eleetromagnetorheological (EMR) suspensions under compatible electric and magnetic fields. When the fields are applied simultaneously and perpendicularly to each other, the particles rapidly arrange into single layer structures parallel to both fields. In each layer, there is a two-dimensional hexagonal lattice. The single layers then combine together to form thicker sheetlike structures. With the help of the thermal fluctuations, the thicker structures relax into three-dimensional close-packed structures, which may be face-centered cubic (fcc), hexagonal close-packed (hup) lattices, or, more probably, the mixture of them, depending on the initial configurations and the thermal fluctuations. On the other hand, if the electric field is applied first to induce the body-centered tetragonal (bct) columns in the system, and then the magnetic field is applied in the perpendicular direction, the bet to fee structure transition is observed in a very short time. Following that, the structure keeps on evolving due to the demagnetization effect and finally forms close-packed structures with fee and hcp lattice character. The simulation results are in agreement with the theoretical and experimental results.
Resumo:
Anthropologists and cultural geographers have long accepted that animals play an important role in the creation of human cultures. However, such beliefs are yet to be embraced by archaeologists, who seldom give zooarchaeological data much consideration beyond the occasional economic or environmental reconstruction. In an attempt to highlight animal remains as a source of cultural information, this paper examines the evidence for the changing relationship between people and wild animals in Iron Age and Roman southern England. Special attention is given to ‘exotic’ species — in particular fallow deer, domestic fowl and the hare — whose management increased around AD 43. In Iron Age Britain the concept of wild game reserves was seemingly absent, but the post-Conquest appearance of new landscape features such as vivaria, leporaria and piscinae indicates a change in worldview from a situation where people seemingly negotiated with the ‘wilderness’ and ‘wild things’ to one where people felt they had the right or the responsibility to bring them to order. Using Fishbourne Roman Palace as a case study, we argue that wild and exotic animals represented far more than gastronomic treats or symbols of Roman identity, instead influencing the way in which people engaged with, traversed and experienced their surroundings.
Resumo:
Through close readings of Ann Hawkshaw's poetry in the context of industrial Manchester in the 1840s, this article highlights the interaction of form and content in poetry that makes use of the idea of the past to question or complicate the politics of the present.
Resumo:
The transition parameter is based on the electron characteristics close to the Earth's dayside magnetopause, but reveals systematic ordering of other, independent, data such as the ion flow, density and temperature and the rientation and strength of the magnetic field. Potentially, therefore, it is a very useful tool for resolving ambiguities in a sequence of satellite data caused by the effects of structure and motion of the boundary; however, its application has been limited because there has been no clear understanding of how it works. We present an analysis of data from the AMPTE-UKS satellite which shows that the transition parameter orders magnetopause data because magnetic reconnection generates newly-opened field lines which coat the boundary: a direct relationship is found with the time elapsed since the boundary-layer field line was opened. A simple model is used to reproduce this behaviour.
Resumo:
Grassroots innovations (GI) are promising examples of deliberate transformation of socio-technical systems towards resilience and sustainability. However, evidence is needed on the factors that limit or enable their success. This paper set out to study how GI use narratives to empower innovation in the face of incumbent socio-technical regimes. Institutional documents were comparatively analyzed to assess how the narratives influence the structure, form of action and external interactions of two Italian grassroots networks, Bilanci di Giustizia and Transition Network Italy. The paper finds an internal consistency between narratives and strategies for each of the two networks. The paper also highlights core similarities, but also significant differences in the ethical basis of the two narratives, and in the organizations and strategies. Such differences determine different forms of innovation empowerment and expose the niche to different potentials to transform incumbent regimes, or to the risk of being co-opted by them.
Resumo:
We have investigated methane (CH4) dissociative chemisorption on the Ni{100} surface by first-principles molecular dynamics (MD) simulations. Our results show that this reaction is mode-specific, with the n1 state being the most strongly coupled to efficient energy flow into the reaction coordinate when the molecule reaches the transition state. By performing MD simulations for two different transition state (TS) structures we provide evidence of TS structure-specific energy redistribution in methane chemisorption. Our results are compared with recently reported state-resolved measurement of methane adsorption probability on nickel surfaces, and we find that a strong correlation exists between the highest vibrational efficacy measured on Ni{100} for the n1 state and the calculated highest fractional vibrational energy content in this mode.
Resumo:
Numerical simulations are performed to assess the influence of the large-scale circulation on the transition from suppressed to active convection. As a model tool, we used a coupled-column model. It consists of two cloud-resolving models which are fully coupled via a large-scale circulation which is derived from the requirement that the instantaneous domain-mean potential temperature profiles of the two columns remain close to each other. This is known as the weak-temperature gradient approach. The simulations of the transition are initialized from coupled-column simulations over non-uniform surface forcing and the transition is forced within the dry column by changing the local and/or remote surface forcings to uniform surface forcing across the columns. As the strength of the circulation is reduced to zero, moisture is recharged into the dry column and a transition to active convection occurs once the column is sufficiently moistened to sustain deep convection. Direct effects of changing surface forcing occur over the first few days only. Afterward, it is the evolution of the large-scale circulation which systematically modulates the transition. Its contributions are approximately equally divided between the heating and moistening effects. A transition time is defined to summarize the evolution from suppressed to active convection. It is the time when the rain rate within the dry column is halfway to the mean value obtained at equilibrium over uniform surface forcing. The transition time is around twice as long for a transition that is forced remotely compared to a transition that is forced locally. Simulations in which both local and remote surface forcings are changed produce intermediate transition times.
Resumo:
In an adaptive seamless phase II/III clinical trial interim analysis, data are used for treatment selection, enabling resources to be focused on comparison of more effective treatment(s) with a control. In this paper, we compare two methods recently proposed to enable use of short-term endpoint data for decision-making at the interim analysis. The comparison focuses on the power and the probability of correctly identifying the most promising treatment. We show that the choice of method depends on how well short-term data predict the best treatment, which may be measured by the correlation between treatment effects on short- and long-term endpoints.
Resumo:
Sudden stratospheric warmings (SSWs) are the most prominent vertical coupling process in the middle atmosphere, which occur during winter and are caused by the interaction of planetary waves (PWs) with the zonal mean flow. Vertical coupling has also been identified during the equinox transitions, and is similarly associated with PWs. We argue that there is a characteristic aspect of the autumn transition in northern high latitudes, which we call the “hiccup”, and which acts like a “mini SSW”, i.e. like a small minor warming. We study the average characteristics of the hiccup based on a superimposed epoch analysis using a nudged version of the Canadian Middle Atmosphere Model, representing 30 years of historical data. Hiccups can be identified in about half the years studied. The mesospheric zonal wind results are compared to radar observations over Andenes (69N,16E) for the years 2000–2013. A comparison of the average characteristics of hiccups and SSWs shows both similarities and differences between the two vertical coupling processes.
Resumo:
During the development of new therapies, it is not uncommon to test whether a new treatment works better than the existing treatment for all patients who suffer from a condition (full population) or for a subset of the full population (subpopulation). One approach that may be used for this objective is to have two separate trials, where in the first trial, data are collected to determine if the new treatment benefits the full population or the subpopulation. The second trial is a confirmatory trial to test the new treatment in the population selected in the first trial. In this paper, we consider the more efficient two-stage adaptive seamless designs (ASDs), where in stage 1, data are collected to select the population to test in stage 2. In stage 2, additional data are collected to perform confirmatory analysis for the selected population. Unlike the approach that uses two separate trials, for ASDs, stage 1 data are also used in the confirmatory analysis. Although ASDs are efficient, using stage 1 data both for selection and confirmatory analysis introduces selection bias and consequently statistical challenges in making inference. We will focus on point estimation for such trials. In this paper, we describe the extent of bias for estimators that ignore multiple hypotheses and selecting the population that is most likely to give positive trial results based on observed stage 1 data. We then derive conditionally unbiased estimators and examine their mean squared errors for different scenarios.
Resumo:
To understand the evolution of well-organized social behaviour, we must first understand the mechanism by which collective behaviour establishes. In this study, the mechanisms of collective behaviour in a colony of social insects were studied in terms of the transition probability between active and inactive states, which is linked to mutual interactions. The active and inactive states of the social insects were statistically extracted from the velocity profiles. From the duration distributions of the two states, we found that 1) the durations of active and inactive states follow an exponential law, and 2) pair interactions increase the transition probability from inactive to active states. The regulation of the transition probability by paired interactions suggests that such interactions control the populations of active and inactive workers in the colony.