951 resultados para Scaling and root planing
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Includes bibliography.
Resumo:
The objective of this study was to evaluate the effect of different sources and doses of copper (Cu) applied to leaves on growth and nutrition of coffee seedlings. The treatments consisted of combinations of two Cu sources (Cupric Sulfate Ammonium - CSA and Copper Sulfate - CS) and four Cu doses (0, 250, 500 and 1000 g ha-1). The sources of Cu in different doses were dissolved in water, calculated for the application volume of 400 L ha-1. The doses were divided in 3 applications at 20 days. The Cu content and concentration in the leaf, stem, and root in were measured. The dry matter of the leaf, stem, root and total and the utilization, absorption and translocation efficiency, in coffee seedlings were evaluated. In general the Cu content and concentration were obtained for the CS at doses of 250, 500 and 1000 g ha-1 Cu. The maximum increase of total dry matter was 48 and 51 g to CSA and CS, when applied 534 and 668 g ha-1, respectively. The highest utilization and absorption efficiency was found to CSA and CS, respectively. The translocation efficiency was similar for both sources.
Resumo:
Coffea canephora is one of the most economically important coffee species and in Brazil, Conilon is the most widely cultivated plant of this species. Abiotic stresses such as temperature variations and drought periods are factors that significantly affect their production and tend to worsen with globally recognized climate changes. In an attempt to understand the molecular responses of coffee plants in water deficit conditions, recent studies have identified candidate genes (CGs) as CcDREB1D. This gene showed increased expression in response to drought in the leaves of clone 14 (drought tolerant) in relation to the clone 22 (sensitive to drought) of C. canephora Conilon. Based on these results, the identification of DREB genes and their subgroups (SGs) of C. canephora, the objective is to analyze in silico and also in vivo these genes expression in leaf and root of tolerant (14, 73 and 120) and sensitive clones (22) of C. canephora Conilon submitted or not to a water deficit. In silico expressions of all DREB genes were analyzed from the Coffee Genome Hub Database and in vivo expression was performed by the technique "reverse transcription-quantitative PCR" (RT-qPCR). In silico gene expression analysis was possible to identify DREB genes with potential responses to abiotic stresses, corroborating some validated in vivo results. In this analysis, several genes showed differential expression in response to drought among the SGs (IIV), the tolerant and sensitive clones and the leaf and root. These differentially expressed genes were identified as potential CGs and among them, it was found that most tolerant clones showed increased expression in relation to sensitive in response to drought, with higher expression levels for clones 14 and 73. These highest levels were observed in leaves compared to the roots and SG-I stood at greater number of genes expressed in response to drought. These results suggest that DREB CGs, as Cc05_g06840, Cc02_g03420 e Cc08_g13960, play an important role in the regulatory mechanisms of response to drought in C. canephora Conilon.
Resumo:
With the objective of evaluating the response of baru (Dipteryx alata Vog.) to nutrient limitation and to the different levels of fertilization, seven experiments were conducted. Experiment 1: Nutritional limitation in greenhouse. We employed 12 treatments in a completely randomized design with eight replicates. Experiment 2: Levels of liming and P in greenhouse. The experimental design was completely randomized in a factorial scheme with four levels of liming (V23.2% (natural soil), V45%, V65% and V85%) and four doses of P (0, 100, 300 and 500 mg kg -1 of P). Experiment 3: Doses of N in greenhouse. We used seven treatments (0, 75, 150, 225, 300, 375 and 450 mg kg -1 of N) in a completely randomized design. Experiment 4: Doses of K in greenhouse. We used seven treatments (0, 75, 150, 225, 300, 375 and 450 mg kg -1 ) in a completely randomized design. Experiment 5: Levels of liming under field conditions. We used four treatments (V6.7% (natural soil), V35%, V55% and V75%) in a randomized blocks design. Experiment 6: doses of P under field conditions. We used five treatments (0, 23.67, 53.34, 106.67 and 213.36 kg ha -1 of P 2O5) in a randomized blocks design. Experiment 7: Doses of N under field conditions. We used five treatments (0, 30, 60, 120 and 240 kg ha -1 of N) in Latin square. In greenhouse, the evaluations were conducted at eight months (for experiments 1 and 2) and 12 months (for experiments 3 and 4) after seeding, when the measurements of height and root collar diameter of the seedlings. Subsequently, the plants were harvested and separated into shoot and root system, for weighing and evaluating dry biomass gain. In the field, the evaluations were conducted at six, 12, 18, 24 and 30 months (for experiments 5 and 6) and at six, 12 and 18 months (for experiment 7). In these experiments, we evaluated the survival of the seedlings, height of the plants and diameter of the stem at soil height. The data obtained were submitted to analysis of variance, mean tests and regression analysis. In conclusion, during the phase of seedling formation, the species is little demanding in S and B, negatively responds to liming, positively responds to phosphate fertilization and does not respond to nitrogen and potassium fertilization. In the field, in general, the species does not respond to the application of P or to liming, and is negatively influenced by the application of elevated doses of nitrogen.
Resumo:
The common bean (Phaseolus vulgaris L.), a staple food in nutritional diet of Brazilians and populations in developing countries, is a nutritionally rich legume with potential for biofortification. Approximately one third of the world population suffers from nutritional deficiencies, being necessary to increase the nutrient content in vegetables, especially iron (Fe), selenium (Se) and zinc (Zn), which are important micronutrients for plants and human health. In this context, three studies were carried out aiming to evaluate the potential of common bean cultivars to biofortification with Fe, Se and Zn, and verify the interaction between these minerals and iron bioavailability, in order to contribute to increased nutritional quality of grains, reducing the micronutrients deficiency and improving human health. In the first study, experiments were conducted in a greenhouse, with ten common bean cultivars in nutrient solution under different treatments with Fe, Se and Zn. The plant growth and the mineral content of the beans were evaluated in addition to verify the influence of polyphenol and phytate levels on Fe bioavailability in grains fortified with Zn and Se. The evaluated beans cultivars have proved promising for simultaneous biofortification with these nutrients without greatly affecting Fe bioavailability. In the second study, the aim was evaluate the interaction between Fe, Se and Zn in cultivars consumed in Brazil or in USA. Gene expression and root microscopy analysis were performed in order to understand the positive effect of Zn supply on the Fe uptake by roots. The expression of genes related to the transport and uptake of Fe and Zn did not clearly explain the influence of Zn in Fe nutrition. The roots microscopy and the evaluation of nutrient solutions used showed that, in the presence of Zn, there was Fe accumulation in epidermis of the roots and not in the vascular system, prone to be precipitated when it goes through the root membrane. In the latest study, a field experiment was conducted to evaluate the effect of Zn fertilization via soil and foliar, in the content and accumulation of Fe and Zn in grains and in the yield of common bean cultivars, in addition to verify the amount of these micronutrients supplied by biofortified beans. The fertilization with Zn did not affect the yield, but provided high levels of this nutrient in grains of the cultivars analyzed, representing 27% of the recommended daily intake of Zn. The higher Fe content in beans, obtained when there was no application of foliar Zn, supplies 56% of the daily requirement of Fe.
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Agronomia - FEIS
Fertirrigação na produção e qualidade de mudas de Eucalyptus spp. nos períodos de inverno e de verão
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência Florestal - FCA
Resumo:
Pós-graduação em Ciência Florestal - FCA
Utilização de composto orgânico de lodo de esgoto como substrato para produção de mudas de eucalipto
Resumo:
Pós-graduação em Ciência Florestal - FCA