980 resultados para SPECTROMETER
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Lithraea molleoides(Vell.) (Anacardiaceae) é uma árvore encontrada no Brasil, Paraguai, Bolívia, Uruguai, Argentina e Chile. É popularmente usada na forma de extrato alcoólico, decocção e infusão para o tratamento de tosse, bronquite, artrite, doenças do sistema digestivo, como diurético, tranqüilizante, hemostático e tônico. O objetivo do presente estudo foi a extração do óleo essencial dos frutos maduros, folhas e outras partes aéreas da planta e o rendimento do mesmo; a identificação e quantificação dos principais componentes e a determinação da atividade antimicrobiana. O rendimento do óleo essencial dos frutos maduros foi de 1%, entretanto, não foi encontrado óleo essencial nas partes aéreas da planta. A análise do óleo essencial por cromatografia gasosa com espectrometria de massa, mostrou a presença de limoneno (89,89%), alfa-pineno (3,48%), beta-pineno (2,63%), alfa-terpineol (1.27%), mirceno (0,64%), sabineno (0,54%), 4-terpineol (0,28%), canfeno (0,22%) e delta-3-careno (0,13%). O óleo essencial foi ativo contra algumas bactérias Gram positivas e leveduras testadas e não apresentou atividade contra bactérias Gram negativas.
Resumo:
Objetivou-se avaliar a composição química e produtividade dos principais componentes do óleo essencial de Baccharis dracunculifolia DC. em função de doses de composto orgânico (0, 10, 20, 30, 40 e 50 t ha-1). Foi realizada uma colheita, aos 150 dias após o transplante das mudas. O óleo essencial, da massa seca útil da parte aérea, foi extraído por hidrodestilação e analisado em cromatógrafo a gás acoplado a espectrômetro de massas (Shimadzu, QP-5000). A identificação dos constituintes químicos foi realizada através da análise comparativa dos espectros de massas das substâncias com o banco de dados do sistema CG-EM (Nist 62.lib), literatura e índice de retenção. Os resultados foram submetidos à análise de variância pelo teste F, às médias obtidas foram submetidas à análise de regressão e o teste Tukey para o efeito das doses de composto orgânico. Os três componentes sesquiterpênicos, E-nerolidol, espatulenol e óxido de cariofileno, perfazem 58,44% da média relativa da composição química do óleo essencial de B. dracunculifolia, composto pela presença de 28 substâncias. Na produtividade dos componentes γ-muroleno, valenceno, δ-cadineno e E-nerolidol as dosagens estudadas influenciaram as plantas, que na dosagem 30 t ha-1 obtiveram os melhores resultados. Se o objetivo no cultivo de B. dracunculifolia for o componente espatulenol as dosagens 30 e 40 t ha-1 obtiveram os melhores resultados. Para a produtividade do componente óxido de cariofileno as dosagens estudadas influenciaram as plantas, que na dosagem 40 t ha-1 obtiveram os melhores resultados.
Resumo:
Objetivou-se com este estudo a identificação de alguns fatores protéicos envolvidos na qualidade funcional dos espermatozóides epididimais (SPZEP) e ejaculados (SPZEJ) de bovinos. Foram avaliadas as características morfofisiológicas e analisado o conteúdo peptídico destas estruturas de 11 animais mestiços Nelore, de 24 a 30 meses de idade. As avaliações morfofisiológicas foram motilidade progressiva (MOT, %), vigor, patologias espermáticas, integridade acrossômica e da cromatina. Foi observado que, os SPZEJ, na média, apresentaram MOT maior do que os SPZEP, 72,3 e 46,4%, respectivamente. Considerando as patologias espermáticas, taxas de defeitos maiores (DEFMAI), menores (DEFMEN) e totais (DEFTOT), houve diferença significativa entre as taxas dos DEFMEN e DEFTOT dos SPZEP e SPZEJ, sendo, em média, 91,1 e 8,5% e 95,4 e 11,8%, respectivamente. As taxas dos DEFMEN e DEFTOT dos SPZEP foram maiores em função da presença de espermatozóides com gotas citoplasmáticas distais. A análise das protéinas dos SPZEP e SPZEJ foi realizada por espectrometria de massa, método MALDI-TOF (matrix -assisted laser desorption/ionization - time of flight), e revelou presença de peptídeos de massa molecular variando de 1,1 a 26,3 kDa nos SPZEJ e de 1,1 a 11,6 kDa nos SPZEP. Foram identificados peptídeos de 10,6 e 13,4 kDa somente nos SPZEJ e de 6,8 kDa somente nos SPZEP. Foi observada relação do peptídeo de massa molecular de 7,4 kDa dos SPZEP e de 4,7 kDa dos SPZEJ, com a MOT Ê 80%, destas estruturas. Os resultados sugerem o envolvimento destes peptídeos nos processos funcionais das células espermáticas do epidídimo e ejaculado. O estudo utilizou o método MALDI/TOF para espectrômetro de massa, para identificar peptídeos em espermatozóides do epidídimo de bovinos, pela primeira vez no País.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The influence of sample preparation strategy of vegetables on the electrothermal behaviour of Se without and with chemical modifiers such as Pd(NO3)(2), Pd(NO3)(2) + Mg(NO3)(2), Pd(NO3)(2) + Cd(NO3)(2), pre-reduced Pd, Mg(NO3)(2), and Ni(NO3)(2) was investigated. Acid digestates and slurries of vegetables (0.1% m/v in 1% m/v HNO3 + 0.005% v/v of Triton X-100) were used to prepare reference solutions or slurries. For 10 mul of each modifier tested, pyrolysis and atomization temperatures were evaluated using pyrolysis and atomization curves, respectively. Best conditions, such as thermal stability, signal profile, repeatability and sensitivity were attained using Pd(NO3)(2) as chemical modifier. The following heating program (temperature, ramp/hold time) of the graphite tube of the Varian SpectrAA-800Z atomic absorption spectrometer was used: dry step (85 degreesC, 5/0 s; 95 degreesC, 40/0 s; 120 degreesC, 10/.5 s); pyrolysis step (1400 degreesC, 10/3s); atomization step (2200 degreesC, 1/2 s); clean step (2600 degreesC, 2/0 s). This pyrolysis temperature is 800 degreesC higher than when measuring without any modifier. For 20 muL sample volume and 10 mug Pd(NO3)(2), analytical curves in the 3.0-30 mug Se 1(-1) range were obtained. The method was applied for Se determination in acid digestates and slurries of 10 vegetable samples and one standard reference material (rice flower) and results were in agreement at 95% confidence level. Recoveries varied from 89 to 95% for spiked samples. The lifetime of the graphite tube was ca. 250 firings and the relative standard deviations (n = 12) for a typical acid digestate and slurry containing 20 mug Se 1(-1) were 3.8% and 8.3%, respectively. The limits of detection were 2.0 mug Se 1(-1) and 0.6 mug Se 1(-1) Se for digestates and slurries, respectively. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Statement of problem. Titanium has physical and mechanical properties, which have led to its increased use in dental prostheses despite casting difficulties due to high melting point and formation of oxide layers which affect the metal-ceramic bond strength.Purpose. This in vitro study evaluated the shear bond strength of the interface of 2 dental porcelains and pure titanium injected into a mold at 3 different temperatures.Material and methods. Using commercially pure (cp) titanium bars (Titanium, Grade I) melted at 1668degreesC and cast at mold temperatures of 430degreesC, 700degreesC or 900degreesC, 60 specimens were machined to 4 x 4 mm, with a base of 5 x 1 mm. The 4-mm surfaces were airborne-particle abraded with 100 mum aluminum oxide before applying and firing the bonding agent and evaluating the 2 porcelains (Triceram/Triline ti and Vita Titankeramik). Ten specimens were prepared for each temperature and porcelain combination Shear bond testing was performed in a universal testing machine, with a 500-kg load cell and crosshead speed of 0.5 mm/min. The specimens were loaded until failure. The interfaces of representative fractured specimens of each temperature were examined with a scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Data for shear bond strength (MPa) were statistically analyzed by 2-way ANOVA and the Tukey test (alpha = .05).Results. The results showed significant differences for the metal/porcelain interaction effect (P = .0464). There were no significant differences for the 2 porcelains (P = .4250). The Tukey test showed a significant difference between the pair cp Ti 430degreesC Triceram and cp Ti 900degreesC Triceram, with respective mean values and SDs of 59.74 +/- 11.62 and 34.03 +/- 10.35 MPa.Conclusion. Triceram porcelain showed a bond strength decrease with an increase in the mold temperature for casting titanium. The highest bond strength for Vita porcelain and the best metal-ceramic interface observed with the SEM were found with the mold temperature of 700degreesC.
Resumo:
A method has been developed for the direct determination of Se in nutritionally relevant foods by graphite furnace atomic absorption spectrometry. Tungsten/rhodium carbide coating on the integrated platform of a transversely heated graphite atomizer or W coating with co-injection of Pd(NO3)(2) were used as a permanent modifiers. Samples and reference solutions were spiked with 500 mu g L-1 As and absorbance variations due to changes in experimental conditions were minimized. For 20 mu L aqueous analytical solutions delivered into the graphite tube, analytical curves in the 5.0-40 mu g L-1 with good linear correlation were established. Pyrolysis and atomization temperatures were evaluated using pyrolysis and atomization curves, respectively. The optimized heating program (temperature, ramp time, hold time) of the graphite tube of the Perkin-Elmer SIMAA 6000 atomic absorption spectrometer was: dry steps (110 degrees C, 5 s, 10 s; 130 degrees C, 15 s, 15 s); air-assisted pyrolysis step (600 degrees C, 20 s, 40 s; 20 degrees C, 1 s, 40 s); pyrolysis step (1300 degrees C, 10 s, 20 s); atomization step (2100 degrees C, 0 s, 4 s); clean step (2550 degrees C, 1 s, 5 s). The method was applied for Se determination in coconut water, coconut milk, soybean milk, cow milk, tomato juice, mango juice, grape juice and drinking water samples and four standard reference materials and results were in agreement at 95% confidence level. The lifetime of the tube was 500 firings and the relative standard deviations of measurements of typical samples containing 25 mu gL(-1) Se were 3.0% and 6.0% (n = 12) with and without internal standardization, respectively. The limits of detection were in the 0.35 mu g L-1-0.7 mu g Se L-1 range. The accuracy of the proposed method was evaluated by an addition-recovery experiment and all recovered values were in the 98-109% range. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Minidosimeters of L-alanine and 2-methylalanine (2MA) were prepared and tested as potential candidates for small radiation field dosimetry. To quantify the free radicals created by radiation a K-Band (24 GHz) EPR spectrometer was used. X-rays provided by a 6 MV clinical linear accelerator were used to irradiate the minidosimeters in the dose range of 0.5-30 Gy. The dose-response curves for both radiation sensitive materials displayed a good linear behavior in the dose range indicated with 2MA being more radiation sensitive than L-alanine. Moreover, 2MA showed a smaller LLD (lower limit detection) value. The proposed system minidosimeter/K-Band spectrometer was able to detect 10 Gy EPR spectra with good signal-to-noise ratio (S/N). The overall uncertainty indicates that this system shows a good performance for the detection of dose values of 20 Gy and above, which are dose values typically used in radiosurgery treatments. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The use of Saccharomyces cerevisiae as a sorbent material to separate Cd(II) and Cd-metallothionein complex (Cd-MT) has been explored. Solid-liquid phase extractions were carried out in batch mode and the main parameters of the process (pH, temperature, time of incubation, amount of biomass and analyte) were evaluated. Under optimized conditions, the yeast quantitatively retain (94 +/- 5%) the Cd(II) while 97 +/- 2% of the Cd-MT remain in the supernatant. on base of the findings of this study, a simple method is proposed to determine Cd(II) and Cd-MT in cytosols extracted from mouse kidney and crab hepatopancreas. Inductively coupled plasma optical emission spectrometry was used to quantify the analytes in solid and liquid phase. Determination of Cd in the solid phase was carried out by introducing a slurry of the yeast (0.0625 g/10 mL) directly to the inductively coupled plasma optical emission spectrometer. Mixed standards solutions, which also have been submitted to the extraction procedure, were used to quantify the analytes in the samples. Thus, matrix effects due to nebulization of the slurry were overcame. Limits of detection (3 sigma) for Cd(II) and Cd-MT were 1.5 and 1.2 mu g L-1, respectively. Relative standard deviations of signals were 4.2% for measurements in the slurry of solid phase and 2.1% for measurements in the liquid phase. Recoveries of the analytes in cytosol samples were between 76 and 114%. The concentrations of Cd(II) (2.4 +/- 0.5 mu g L-1) and Cd-MT (3.0 +/- 0.5 mu g L-1) found by using the proposed approach were close to those found by tangential-flow ultrafiltration technique (2.6 +/- 0.7 mu g L-1 for Cd(II) and 3.7 +/- 1.7 mu g L-1 for Cd-MT).
Resumo:
A method is proposed for the simultaneous determination of Al, As, Cu, Fe, Mn, and Ni in fuel ethanol by electrothermal atomic absorption spectrometry (ETAAS) using W-Rh permanent modifier together with Pd(NO3)(2) + Mg(NO3)(2) conventional modifier. The integrated platform of a transversely heated graphite atomizer (THGA) was treated with tungsten, followed by rhodium, forming a deposit containing 250 mug W + 200 mug Rh. A 500-muL, volume of fuel ethanol was diluted with 500 muL, of 0.14 mol L-1 HNO3 in an autosampler cup of the spectrometer. Then, 20 muL, of the diluted ethanol was introduced into the pretreated graphite platform followed by the introduction of 5 mug Pd(NO3)(2) + 3 mug Mg(NO3)(2). The injection of this modifier was required to improve arsenic and iron recoveries in fuel ethanol. Calibrations were carried out using multi-element reference solutions prepared in diluted ethanol (1 + 1, v/v) acidified to 0. 14 mol L-1 HNO3. The pyrolysis and atomization temperatures of the heating program were 1200degreesC and 2200degreesC, respectively, which were obtained with multielement reference solutions in acidic diluted ethanol (1 + 1, v/v; 0. 14 mol L-1 HNO3). The characteristic masses for the simultaneous determination in ethanol fuel were 78 pg Al, 33 pg As, 10 pg Cu, 14 pg Fe, 7 pg Mn, and 24 pg Ni. The lifetime of the pretreated tube was about 700 firings. The detection limits (D.L.) were 1.9 mug L-1 Al, 2.9 mug L-1 As, 0.57 mug L-1.Cu, 1.3 mug L-1 Fe, 0.40 mug L-1 Mn, and 1.3 mug L-1 Ni. The relative standard deviations (n = 12) were 4%, 4%, 3%, 1.5%, 1.2%, and 2.2% for Al, As, Cu, Fe, Mn, and Ni, respectively. The recoveries of Al, As, Cu, Fe, Mn, and Ni added to the fuel ethanol samples varied from 81% to 95%, 80% to 98%, 97% to 109%, 85% to 107%, 98% to 106% and 97% to 103%, respectively. Accuracy was checked for the Al, As, Cu, Fe, Mn, and Ni determination in 10 samples purchased at a local gas station in Araraquara-SP City, Brazil. A paired t-test showed that at the 95% confidence level the results were in agreement with those obtained by single-element ETAAS.
Resumo:
The AlMCM-41 material with Si/Al=50 was synthesized by hydrothermal method, using cethyltrimethylammonium as template. The protonic H-AlMCM-41 acid form was obtained by ion exchange with ammonium chloride solution and subsequent calcination. The characterization of the material by several techniques showed that a good-quality MCM-41 material was obtained. High-density polyethylene (HDPE) has been submitted to thermal degradation alone, and in presence of the exchanged H-AlMCM-41 catalyst at a concentration of 1: 1 in mass (H-AlMCM-41/HDPE). The reactor was connected on line to a gas chromatograph connected to a mass spectrometer. This process was evaluated by thermogravimetry (TG), from 350 to 600degreesC, under helium dynamic atmosphere, with heating rates of 5.0; 10.0 and 20.0 degreesC/min. From TG curves, the activation energy, calculated using a multiple heating rate integral kinetic method, decreased from 225.5 KJ.mol(-1), for the pure polymer (HDPE), to 184.7 KJ.mol(-1), in the presence of the catalyst (H-AlMCM-41/HDPE).
Resumo:
Objective. To identify and quantify the camphorquinone (CQ) used in different brands of composite resins as a function of the shade analyzed.Materials and methods. Filtek Z250 A3 (FZA3), Filtek Z-250 Incisal (FZI), Pyramid Enamel A1 (PEA1), Pyramid Enamel Translucent (PET), Filtek Supreme A3E (FSA3) and Filtek Supreme GT (FSGT) were used. Five hundred milligrams of each resin were weighed and then dissolved in 1.0 ml of methanol. The samples were centrifuged to accelerate the sedimentation of the inorganic particles. 0.8 ml of the supernatant solution was collected with a pipette and assessed under gas chromatography coupled to the mass spectrometer (GC-MS). The results were compared to pure CQ solutions, used as a standard. Student's t-test, (p = 0.05) significant at the level of 5%, compared the results of each brand shade.Results. A smaller amount of camphorquinone was found in Filtek Z-250 (FZI) resin incisal shade when compared to (FZA3) A3 shade. on the other hand, Filtek Supreme resin featured a statistically larger camphorquinone amount in the incisal shade. in Pyramid Enamel resin camphorquinone was found only in shade Al, while the photoinitiator used in the Translucent shade was not identified.Significance. Based on the data obtained, it is possible to conclude that a single composite resin brand may feature differences in amount and type of photoinitiator used. (C) 2006 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
High density poly(ethylene) has been submitted to thermal degradation alone, and in the presence of silicoaluminophosphate SAPO-37. The processes were carried out in a reactor connected on line to a gas chromatograph/mass spectrometer in order to analyze the evolved products. Polymer degradation was also evaluated by thermogravimetry, from room temperature until 800 degreesC, under nitrogen dynamic atmosphere, with multiple heating rates. From TG curves, the activation energy related to degradation process was calculated using the Flynn and Wall multiple heating rate kinetic model for pure polymer (PE) and for polymer in the presence of catalyst (PE/S37). SAPO-37 showed good selectivity for low molecular mass hydrocarbons in PE catalytic degradation.
Resumo:
We report here on the application of a compact ultraviolet spectrometer to measurement of NO2 emissions from sugar cane field burns in São Paulo, Brazil, the time-resolved NO2 emission from a 10 ha plot peaked at about 240 g (NO2) s(-1), and amounted to a total yield of approximately 50 kg of N, or about 0.5 g (N) m(-2). Emission of N as NOx (i.e., NO + NO2) was estimated at 2.5 g (N) in 2, equivalent to 30% of applied fertilizer nitrogen. The corresponding annual emission of NOx nitrogen from São Paulo State sugar cane burning was >45 Gg N. In contrast to mechanized harvesting, which does not require prior burning of the crop, manual harvesting with burning acts to recycle nitrogen into surface soils and ecosystems.