967 resultados para SCLERODERMA FIBROBLASTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of versatile bioactive surfaces able to emulate in vivo conditions is of enormous importance to the future of cell and tissue therapy. Tuning cell behaviour on two-dimensional surfaces so that the cells perform as if they were in a natural three-dimensional tissue represents a significant challenge, but one that must be met if the early promise of cell and tissue therapy is to be fully realised. Due to the inherent complexities involved in the manufacture of biomimetic three-dimensional substrates, the scaling up of engineered tissue-based therapies may be simpler if based upon proven two-dimensional culture systems. In this work, we developed new coating materials composed of the self-assembling peptide amphiphiles (PAs) C16G3RGD (RGD) and C16G3RGDS (RGDS) shown to control cell adhesion and tissue architecture while avoiding the use of serum. When mixed with the C16ETTES diluent PA at 13 : 87 (mol mol-1) ratio at 1.25 times 10-3 M, the bioactive {PAs} were shown to support optimal adhesion, maximal proliferation, and prolonged viability of human corneal stromal fibroblasts ({hCSFs)}, while improving the cell phenotype. These {PAs} also provided stable adhesive coatings on highly-hydrophobic surfaces composed of striated polytetrafluoroethylene ({PTFE)}, significantly enhancing proliferation of aligned cells and increasing the complexity of the produced tissue. The thickness and structure of this highly-organised tissue were similar to those observed in vivo, comprising aligned newly-deposited extracellular matrix. As such, the developed coatings can constitute a versatile biomaterial for applications in cell biology, tissue engineering, and regenerative medicine requiring serum-free conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteolytic enzymes comprise approximately 2 percent of the human genome [1]. Given their abundance, it is not surprising that proteases have diverse biological functions, ranging from the degradation of proteins in lysosomes to the control of physiological processes such as the coagulation cascade. However, a subset of serine proteases (possessing serine residues within their catalytic sites), which may be soluble in the extracellular fluid or tethered to the plasma membrane, are signaling molecules that can specifically regulate cells by cleaving protease-activated receptors (PARs), a family of four G-protein-coupled receptors (GPCRs). These serine proteases include members of the coagulation cascade (e.g., thrombin, factor VIIa, and factor Xa), proteases from inflammatory cells (e.g., mast cell tryptase, neutrophil cathepsin G), and proteases from epithelial tissues and neurons (e.g., trypsins). They are often generated or released during injury and inflammation, and they cleave PARs on multiple cell types, including platelets, endothelial and epithelial cells, myocytes, fibroblasts, and cells of the nervous system. Activated PARs regulate many essential physiological processes, such as hemostasis, inflammation, pain, and healing. These proteases and their receptors have been implicated in human disease and are potentially important targets for therapy. Proteases and PARs participate in regulating most organ systems and are the subject of several comprehensive reviews [2, 3]. Within the central and peripheral nervous systems, proteases and PARs can control neuronal and astrocyte survival, proliferation and morphology, release of neurotransmitters, and the function and activity of ion channels, topics that have also been comprehensively reviewed [4, 5]. This chapter specifically concerns the ability of PARs to regulate TRPV channels of sensory neurons and thereby affect neurogenic inflammation and pain transmission [6, 7].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the self-assembly of peptide A6RGD (A: alanine, R: arginine, G: glycine, D: aspartic acid) in water, and the use of A6RGD substrates as coatings to promote the attachment of human cornea stromal fibroblasts (hCSFs). The self-assembled motif of A6RGD was shown to depend on the peptide concentration in water, where both vesicle and fibril formation were observed. Oligomers were detected for 0.7 wt% A6RGD, which evolved into short peptide fibres at 1.0 wt% A6RGD, while a co-existence of vesicles and long peptide fibres was revealed for 2–15 wt% A6RGD. A6RGD vesicle walls were shown to have a multilayer structure built out of highly interdigitated A6 units, while A6RGD fibres were based on β-sheet assemblies. Changes in the self-assembly motif with concentration were reflected in the cell culture assay results. Films dried from 0.1–1.0 wt% A6RGD solutions allowed hCSFs to attach and significantly enhanced cell proliferation relative to the control. In contrast, films dried from 2.5 wt% A6RGD solutions were toxic to hCSFs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incorporation of small bioactive peptide motifs within robust hydrogels constitutes a facile procedure to chemically functionalise cell and tissue scaffolds. In this study, a novel approach to utilise Fmoc-linked peptide amphiphiles comprising the bio-functional cell-adhesion RGDS motif within biomimetic collagen gels was developed. The composite scaffolds thus created were shown to maintain the mechanical properties of the collagen gel while presenting additional bio-activity. In particular, these materials enhanced the adhesion and proliferation of viable human corneal stromal fibroblasts by 300% compared to nonfunctionalised gels. Furthermore, the incorporation of Fmoc-RGDS nanostructures within the collagen matrix significantly suppressed gel shrinkage resulting from the contractile action of encapsulated fibroblasts once activated by serum proteins. These mechanical and biological properties demonstrate that the incorporation of peptide amphiphiles provides a suitable and easy method to circumvent specific biomaterial limitations, such as cell-derived shrinkage, for improved performance in tissue engineering and regenerative medicine applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LRRK2 is one of the most important genetic contributors to Parkinson’s disease (PD). Point mutations in this gene cause an autosomal dominant form of PD, but to date no cellular phenotype has been consis- tently linked with mutations in each of the functional domains (ROC, COR and Kinase) of the protein product of this gene. In this study, primary fibroblasts from individuals carrying pathogenic mutations in the three central domains of LRRK2 were assessed for alterations in the autophagy/lysosomal pathway using a combination of biochemical and cellular approaches. Mutations in all three domains resulted in alterations in markers for autophagy/lysosomal function compared to wild type cells. These data high- light the autophagy and lysosomal pathways as read outs for pathogenic LRRK2 function and as a marker for disease, and provide insight into the mechanisms linking LRRK2 function and mutations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been a recent surge in the use of silver as an antimicrobial agent in a wide range of domestic and clinical products, intended to prevent or treat bacterial infections and reduce bacterial colonization of surfaces. It has been reported that the antibacterial and cytotoxic properties of silver are affected by the assay conditions, particularly the type of growth media used in vitro. The toxicity of Ag+ to bacterial cells is comparable to that of human cells. We demonstrate that biologically relevant compounds such as glutathione, cysteine and human blood components significantly reduce the toxicity of silver ions to clinically relevant pathogenic bacteria and primary human dermal fibroblasts (skin cells). Bacteria are able to grow normally in the presence of silver nitrate at >20-fold the minimum inhibitory concentration (MIC) if Ag+ and thiols are added in a 1:1 ratio because the reaction of Ag+ with extracellular thiols prevents silver ions from interacting with cells. Extracellular thiols and human serum also significantly reduce the antimicrobial activity of silver wound dressings Aquacel-Ag (Convatec) and Acticoat (Smith & Nephew) to Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli in vitro. These results have important implications for the deployment of silver as an antimicrobial agent in environments exposed to biological tissue or secretions. Significant amounts of money and effort have been directed at the development of silver-coated medical devices (e.g. dressings, catheters, implants). We believe our findings are essential for the effective design and testing of antimicrobial silver coatings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a bioactive lipopeptide that combines the capacity to promote the adhesion and subsequent self-detachment of live cells, using template-cell-environment feedback interactions. This self-assembling peptide amphiphile comprises a diene-containing hexadecyl lipid chain (C16e) linked to a matrix metalloprotease-cleavable sequence, Thr-Pro-Gly-Pro-Gln-Gly-Ile-Ala-Gly-Gln, and contiguous with a cell-attachment and signalling motif, Arg-Gly-Asp-Ser. Biophysical characterisation revealed that the PA self-assembles into 3 nm diameter spherical micelles above a critical aggregation concentration (cac). In addition, when used in solution at 5–150 nM (well below the cac), the PA is capable of forming film coatings that provide a stable surface for human corneal fibroblasts to attach and grow. Furthermore, these coatings were demonstrated to be sensitive to metalloproteases expressed endogenously by the attached cells, and consequently to elicit the controlled detachment of cells without compromising their viability. As such, this material constitutes a novel class of multi-functional coating for both fundamental and clinical applications in tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The need to source live human tissues for research and clinical applications has been a major driving force for the development of new biomaterials. Ideally, these should elicit the formation of scaffold-free tissues with native-like structure and composition. In this study, we describe a biologically interactive coating that combines the fabrication and subsequent self-release of live purposeful tissues using template–cell–environment feedback. This smart coating was formed from a self-assembling peptide amphiphile comprising a proteasecleavable sequence contiguous with a cell attachment and signaling motif. This multifunctional material was subsequently used not only to instruct human corneal or skin fibroblasts to adhere and deposit discreet multiple layers of native extracellular matrix but also to govern their own self-directed release from the template solely through the action of endogenous metalloproteases. Tissues recovered through this physiologically relevant process were carrier-free and structurally and phenotypically equivalent to their natural counterparts. This technology contributes to a new paradigm in regenerative medicine, whereby materials are able to actively direct and respond to cell behavior. The novel application of such materials as a coating capable of directing the formation and detachment of complex tissues solely under physiological conditions can have broad use for fundamental research and in future cell and tissue therapies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Derivatives of fluorophore FITC (fluorescein isothiocyanate) are widely used in bioassays to label proteins and cells. An N-terminal leucine dipeptide is attached to FITC, and we show that this simple conjugate molecule is cytocompatible and is uptaken by cells (human dermal and corneal fibroblasts) in contrast to FITC itself. Co-localisation shows that FITC-LL segregates in peri-nuclear and intracellular vesicle regions. Above a critical aggregation concentration, the conjugate is shown to self-assemble into beta-sheet nanostructures comprising molecular bilayers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In common with many plants native to low P soils, jarrah (Eucalyptus marginata) develops toxicity symptoms upon exposure to elevated phosphorus (P). Jarrah plants can establish arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) associations, along with a non-colonizing symbiosis described recently. AM colonization is known to influence the pattern of expression of genes required for P uptake of host plants and our aim was to investigate this phenomenon in relation to P sensitivity. Therefore, we examined the effect on hosts of the presence of AM and ECM fungi in combination with toxic pulses of P and assessed possible correlations between the induced tolerance and the shoot P concentration. The P transport dynamics of AM (Rhizophagus irregularis and Scutellospora calospora), ECM (Scleroderma sp.), non-colonizing symbiosis (Austroboletus occidentalis), dual mycorrhizal (R. irregularis and Scleroderma sp.), and non-mycorrhizal (NM) seedlings were monitored following two pulses of P. The ECM and A. occidentalis associations significantly enhanced the shoot P content of jarrah plants growing under P-deficient conditions. In addition, S. calospora, A. occidentalis, and Scleroderma sp. all stimulated plant growth significantly. All inoculated plants had significantly lower phytotoxicity symptoms compared to NM controls 7 days after addition of an elevated P dose (30 mg P kg−1 soil). Following exposure to toxicity-inducing levels of P, the shoot P concentration was significantly lower in R. irregularis-inoculated and dually inoculated plants compared to NM controls. Although all inoculated plants had reduced toxicity symptoms and there was a positive linear relationship between rank and shoot P concentration, the protective effect was not necessarily explained by the type of fungal association or the extent of mycorrhizal colonization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most terrestrial plants form mutually beneficial symbioses with specific soil-borne fungi known as mycorrhiza. In a typical mycorrhizal association, fungal hyphae colonize plant roots, explore the soil beyond the rhizosphere and provide host plants with nutrients that might be chemically or physically inaccessible to root systems. Here, we combined nutritional, radioisotopic (33P) and genetic approaches to describe a plant growth promoting symbiosis between the basidiomycete fungus Austroboletus occidentalis and jarrah (Eucalyptus marginata), which has quite different characteristics. We show that the fungal partner does not colonize plant roots; hyphae are localized to the rhizosphere soil and vicinity and consequently do not transfer nutrients located beyond the rhizosphere. Transcript profiling of two high-affinity phosphate (Pi) transporter genes (EmPHT1;1 and EmPHT1;2) and hyphal-mediated 33Pi uptake suggest that the Pi uptake shifts from an epidermal to a hyphal pathway in ectomycorrhizal plants (Scleroderma sp.), similar to arbuscular mycorrhizal symbioses, whereas A. occidentalis benefits its host indirectly. The enhanced rhizosphere carboxylates are linked to growth and nutritional benefits in the novel symbiosis. This work is a starting point for detailed mechanistic studies on other basidiomycete–woody plant relationships, where a continuum between heterotrophic rhizosphere fungi and plant beneficial symbioses is likely to exist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Jarrah (Eucalyptus marginata Donn ex Sm.) plants, like many other eucalypts, can form symbiotic associations with both arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi. To study this tripartite relationship we developed a novel nurse-pot system to allow us to investigate the extent and temporal colonisation dynamics of jarrah by two AM species (Rhizophagus irregularis (Błaszk., Wubet, Renker & Buscot) C. Walker & A. Schüßler comb. nov. and Scutellospora calospora Nicol. & Gerd.) and two putative ECM species (Austroboletus occidentalis Watling & N.M. Greg. and Scleroderma sp.) and their potential effects on jarrah growth and nutrition. Our nurse-pot system, using jarrah as both the nurse plant and test plant, was developed to establish extraradical hyphal networks of both AM and ECM fungi that act as single or dual inoculum for test plants. Mycorrhizal colonisation was described and quantified, and growth and nutritional effects measured and analysed. Mycorrhizal colonisation increased with time for the test seedlings exposed to hyphae networks from S. calospora and Scleroderma sp. The nurse-pot system was effective at initiating colonisation of functioning AM or (putative) ECM systems separately but the ECM symbiosis was inhibited where a dual AM + ECM inoculum (R. irregularis and Scleroderma sp.) was present. The presence of S. calospora, A. occidentalis and Scleroderma sp. individually significantly increased the shoot biomass of seedlings compared with non-mycorrhizal controls. The two AM isolates had different physiological effects on jarrah plants. S. calospora improved growth and micronutrient uptake of jarrah seedlings whereas no positive response was observed with R. irregularis. In addition, as an interesting observation, the non-responsive AM fungus R. irregularis suppressed the ECM symbiosis in dually inoculated plants where ECM structures, positive growth response and nutritional effects were absent. When inoculated individually, ECM isolates dominated the growth response and uptake of P and other nutrients in this dual symbiotic plant. Despite the positive growth response in the A. occidentalis treatment, ECM structures were not observed in either nurse or test seedlings. From the effects of A. occidentalis on jarrah we hypothesise that this fungus forms a functional mycorrhizal-type partnership even without forming archetypal structures in and on the root

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fat mass and obesity-associated (FTO) gene plays a pivotal role in regulating body weight and fat mass; however, the underlying mechanisms are poorly understood. Here we show that primary adipocytes and mouse embryonic fibroblasts (MEFs) derived from FTO overexpression (FTO-4) mice exhibit increased potential for adipogenic differentiation, while MEFs derived from FTO knockout (FTO-KO) mice show reduced adipogenesis. As predicted from these findings, fat pads from FTO-4 mice fed a high-fat diet show more numerous adipocytes. FTO influences adipogenesis by regulating events early in adipogenesis, during the process of mitotic clonal expansion. The effect of FTO on adipogenesis appears to be mediated via enhanced expression of the pro-adipogenic short isoform of RUNX1T1, which enhanced adipocyte proliferation, and is increased in FTO-4 MEFs and reduced in FTO-KO MEFs. Our findings provide novel mechanistic insight into how upregulation of FTO leads to obesity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we applied a smart biomaterial formed from a self-assembling, multi-functional synthetic peptide amphiphile (PA) to coat substrates with various surface chemistries. The combination of PA coating and alignment-inducing functionalised substrates provided a template to instruct human corneal stromal fibroblasts to adhere, become aligned and then bio-fabricate a highlyordered, multi-layered, three-dimensional tissue by depositing an aligned, native-like extracellular matrix. The newly-formed corneal tissue equivalent was subsequently able to eliminate the adhesive properties of the template and govern its own complete release via the action of endogenous proteases. Tissues recovered through this method were structurally stable, easily handled, and carrier-free. Furthermore, topographical and mechanical analysis by atomic force microscopy showed that tissue equivalents formed on the alignment-inducing PA template had highly-ordered, compact collagen deposition, with a two-fold higher elastic modulus compared to the less compact tissues produced on the non-alignment template, the PA-coated glass. We suggest that this technology represents a new paradigm in tissue engineering and regenerative medicine, whereby all processes for the biofabrication and subsequent self-release of natural, bioprosthetic human tissues depend solely on simple templatetissue feedback interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C16-YEALRVANEVTLN, a peptide amphiphile (PA) incorporating a biologically active amino acid sequence found in lumican, has been examined for its influence upon collagen synthesis by human corneal fibroblasts in vitro, and the roles of supra-molecular assembly and activin receptor-like kinase ALK receptor signaling in this effect were assessed. Cell viability was monitored using the Alamar blue assay, and collagen synthesis was assessed using Sirius red. The role of ALK signaling was studied by receptor inhibition. Cultured human corneal fibroblasts synthesized significantly greater amounts of collagen in the presence of the PA over both 7-day and 21-day periods. The aggregation of the PA to form nanotapes resulted in a notable enhancement in this activity, with an approximately two-fold increase in collagen production per cell. This increase was reduced by the addition of an ALK inhibitor. The data presented reveal a stimulatory effect upon collagen synthesis by the primary cells of the corneal stroma, and demonstrate a direct influence of supra-molecular assembly of the PA upon the cellular response observed. The effects of PA upon fibroblasts were dependent upon ALK receptor function. These findings elucidate the role of self-assembled nanostructures in the biological activity of peptide amphiphiles, and support the potential use of a self-assembling lumican derived PA as a novel biomaterial, intended to promote collagen deposition for wound repair and tissue engineering purposes