952 resultados para SACCADIC REACTION-TIME
Resumo:
(1) In the period 1965/77 fertilizer consumption in Brazil increased nearly fifteen foild from circa 200,000 tons of N + P2O5 + K2O to 3 million tons. During the fifteen years extending from 1950 to 1964 usage of the primary macronutrients was raised by a factor of 2 only. (2) Several explanations are given for the remarkable increase, namely: an experimental background which supplied data for recommendations of rates, time and type of application; a convenient governmental policy for minimum prices and rural credit; capacity of the industry to meet the demand of the fertilizer market; an adequate mechanism for the diffusion of the practice of fertilizer use to the farmer. (3) The extension work, which has caused a permanent change in the aptitude towards fertilization, was carried out in the traditional way by salesmen supported by a technical staff, as well as by agronomists of the official services. (4) Two new programs were started and conducted in a rather short time, both putting emphasis on the relatively new technology of fertilizer use. (5) The first program, conducted in the Southern part of the country, extended lab and green house work supplemented by a few field trials to small land owners - the so called "operação tatú" (operation armadillo). (6) The seconde program, covering a larger problem area in the Northeast and in Central Brazil, began directly in field as thousands of demonstrations and simple experiments with the participation of local people whose involvement was essential for the success of the initiative; in this case the official extension services, both foreign and national sources of funds, and universities did participate under the leadership of the Brazilian Association for the Diffusion of Fertilizers (ANDA). (7) It is felt that the Brazilian experience gained thereof could be useful to other countries under similar conditions.
Resumo:
Research into the biomechanical manifestation of fatigue during exhaustive runs is increasingly popular but additional understanding of the adaptation of the spring-mass behaviour during the course of strenuous, self-paced exercises continues to be a challenge in order to develop optimized training and injury prevention programs. This study investigated continuous changes in running mechanics and spring-mass behaviour during a 5-km run. 12 competitive triathletes performed a 5-km running time trial (mean performance: 17 min 30 s) on a 200 m indoor track. Vertical and anterior-posterior ground reaction forces were measured every 200 m by a 5-m long force platform system, and used to determine spring-mass model characteristics. After a fast start, running velocity progressively decreased (- 11.6%; P<0.001) in the middle part of the race before an end spurt in the final 400-600 m. Stride length (- 7.4%; P<0.001) and frequency (- 4.1%; P=0.001) decreased over the 25 laps, while contact time (+ 8.9%; P<0.001) and total stride duration (+ 4.1%; P<0.001) progressively lengthened. Peak vertical forces (- 2.0%; P<0.01) and leg compression (- 4.3%; P<0.05), but not centre of mass vertical displacement (+ 3.2%; P>0.05), decreased with time. As a result, vertical stiffness decreased (- 6.0%; P<0.001) during the run, whereas leg stiffness changes were not significant (+ 1.3%; P>0.05). Spring-mass behaviour progressively changes during a 5-km time trial towards deteriorated vertical stiffness, which alters impact and force production characteristics.
Resumo:
BACKGROUND: HSV-1 and HSV-2 cause CNS infections of dissimilar clinico-pathological characteristics with prognostic and therapeutic implications. OBJECTIVES: To validate a type-specific real-time PCR that uses MGB/LNA Taqman probes and to review the virologico-clinical data of 25 eligible patients with non-neonatal CNS infections. RESULTS: This real-time PCR was evaluated against conventional PCR (26 CSF and 20 quality controls), and LightCycler assay (51 mucocutaneous, 8 CSF and 32 quality controls) and culture/immunofluorescence (75 mucocutaneous) to assess typing with independent methods. Taqman real-time PCR detected 240 HSV genomes per ml CSF, a level appropriate for the management of patients, and provided unambiguous typing for the 104 positive (62 HSV-1 and 42 HSV-2) out the 160 independent clinical samples tested. HSV type diagnosed by Taqman real-time PCR predicted final diagnosis (meningitis versus encephalitis/meningoencephalitis, p<0.001) in 24/25 patients at time of presentation, in contrast to clinical evaluation. CONCLUSIONS: Our real-time PCR, as a sensitive and specific means for type-specific HSV diagnosis, provided rapid prognostic information for patient management.
Resumo:
We show here a simplified reverse transcription-polymerase chain reaction (RT-PCR) for identification of dengue type 2 virus. Three dengue type 2 virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD, as a negative control, were used in this study. C6/36 cells were infected with the virus, and tissue culture fluids were collected after 7 days of infection period. The RT-PCR, a combination of RT and PCR done after a single addition of reagents in a single reaction vessel was carried out following a digestion of virus with 1% Nonidet P-40. The 50ml assay reaction mixture included 50 pmol of a dengue type 2 specific primer pair amplifying a 210 base pair sequence of the envelope protein gene, 0.1 mM of the four deoxynucleoside triphosphates, 7.5U of reverse transcriptase, and 1U of thermostable Taq DNA polymerase. The reagent mixture was incubated for 15 min at 37oC for RT followed by a variable amount of cycles of two-step PCR amplification (92oC for 60 sec, 53oC for 60 sec) with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized with UV light after gel incubation in ethidium bromide solution. DNA bands were observed after 25 and 30 cycles of PCR. Virus amount as low as 102.8 TCID50/ml was detected by RT-PCR. Specific DNA amplification was observed with the three dengue type 2 strains. This assay has advantages compared to other RT-PCRs: it avoids laborious extraction of virus RNA; the combination of RT and PCR reduces assay time, facilitates the performance and reduces risk of contamination; the two-step PCR cycle produces a clear DNA amplification, saves assay time and simplifies the technique
Resumo:
Monitoring of T-cell responses in genital mucosa has remained a major challenge because of the absence of lymphoid aggregates and the low abundance of T cells. Here we have adapted to genital tissue a sensitive real-time reverse transcription-PCR (TaqMan) method to measure induction of gamma interferon (IFN-gamma) mRNA transcription after 3 h of antigen-specific activation of CD8 T cells. For this purpose, we vaccinated C57BL/6 mice subcutaneously with human papillomavirus type 16 L1 virus-like particles and monitored the induction of CD8 T cells specific to the L1(165-173) H-2D(b)-restricted epitope. Comparison of the responses induced in peripheral blood mononuclear cells and lymph nodes (LN) by L1-specific IFN-gamma enzyme-linked immunospot assay and TaqMan determination of the relative increase in L1-specific IFN-gamma mRNA induction normalized to the content of CD8b mRNA showed a significant correlation, despite the difference in the readouts. Most of the cervicovaginal tissues could be analyzed by the TaqMan method if normalization to glyceraldehyde-3-phosphate dehydrogenase mRNA was used and a significant L1-specific IFN-gamma induction was found in one-third of the immunized mice. This local response did not correlate with the immune responses measured in the periphery, with the exception of the sacral LN, an LN draining the genital mucosa, where a significant correlation was found. Our data show that the TaqMan method is sensitive enough to detect antigen-specific CD8 T-cell responses in the genital mucosa of individual mice, and this may contribute to elaborate effective vaccines against genital pathogens.
Resumo:
An hemodialysis population in Central Brazil was screened by polymerase chain reaction (PCR) and serological methods to assess the prevalence of hepatitis C virus (HCV) infection and to investigate associated risk factors. All hemodialysis patients (n=428) were interviewed in eight dialysis units in Goiânia city. Blood samples were collected and serum samples screened for anti-HCV antibodies by an enzyme-linked immunosorbent assay (ELISA). Positive samples were retested for confirmation with a line immunoassay (LIA). All samples were also tested for HCV RNA by the PCR. An overall prevalence of 46.7% (CI 95%: 42-51.5) was found, ranging from 20.7% (CI 95%: 8.8-38.1) to 90.4% (CI 95%: 79.9-96.4) depending on the dialysis unit. Of the 428 patients, 185 were found to be seropositive by ELISA, and 167 were confirmed positive by LIA, resulting in an anti-HCV prevalence of 39%. A total of 131 patients were HCV RNA-positive. HCV viremia was present in 63.5% of the anti-HCV-positive patients and in 10.3% of the anti-HCV-negative patients. Univariate analysis of risk factors showed that the number of previous blood transfusions, transfusion of blood before mandatory screening for anti-HCV, length of time on hemodialysis, and treatment in multiple units were associated with HCV positivity. However, multivariate analysis revealed that blood transfusion before screening for anti-HCV and length of time on hemodialysis were significantly associated with HCV infection in this population. These data suggest that nosocomial transmission may play a role in the spread of HCV in the dialysis units studied. In addition to anti-HCV screening, HCV RNA detection is necessary for the diagnosis of HCV infection in hemodialysis patients.
Resumo:
Lymphocytic choriomeningitis virus (LCMV) is a rare cause of central nervous system disease in humans. Screening by real-time RT-PCR assay is of interest in the case of aseptic meningitis of unknown etiology. A specific LCMV real-time RT-PCR assay, based on the detection of genomic sequences of the viral nucleoprotein (NP), was developed to assess the presence of LCMV in cerebrospinal fluids (CSF) sent for viral screening to a Swiss university hospital laboratory. A 10-fold dilution series assay using a plasmid containing the cDNA of the viral NP of the LCMV isolate Armstrong (Arm) 53b demonstrated the high sensitivity of the assay with a lowest detection limit of ≤50 copies per reaction. High sensitivity was confirmed by dilution series assays in a pool of human CSF using four different LCMV isolates (Arm53b, WE54, Traub and E350) with observed detection limits of ≤10PFU/ml (Arm53b and WE54) and 1PFU/ml (Traub and E350). Analysis of 130 CSF showed no cases of acute infection. The absence of positive cases was confirmed by a published PCR assay detecting all Old World arenaviruses. This study validates a specific and sensitive real-time RT-PCR assay for the diagnosis of LCMV infections. Results showed that LCMV infections are extremely rare in hospitalized patients western in Switzerland.
Resumo:
This study aimed to quantify Toxoplasma gondii in tissue samples of serologically positive chickens using real-time polymerase chain reaction (PCR). Of 65 chickens evaluated, 28 were positive for T. gondii antibodies. Brain and heart samples were collected from 26 seropositive chickens and DNA was extracted using Trizol® and amplified using real-time PCR with SYBR® Green. Parasite DNA was detected in 24 of the 26 samples analyzed; the number of positive tissue samples and the parasite quantity did not differ between tissue types. The results confirmed the analytical sensitivity of parasite detection in chicken tissue samples and demonstrated the possibility of using other molecular systems for genotypic analysis.
Resumo:
The introduction of newer molecular methods has led to the discovery of new respiratory viruses, such as human metapneumovirus (hMPV) and human bocavirus (hBoV), in respiratory tract specimens. We have studied the occurrence of hMPV and hBoV in the Porto Alegre (PA) metropolitan area, one of the southernmost cities of Brazil, evaluating children with suspected lower respiratory tract infection from May 2007-June 2008. A real-time polymerase chain reaction method was used for amplification and detection of hMPV and hBoV and to evaluate coinfections with respiratory syncytial virus (RSV), influenza A and B, parainfluenza 1, 2 and 3, human rhinovirus and human adenovirus. Of the 455 nasopharyngeal aspirates tested, hMPV was detected in 14.5% of samples and hBoV in 13.2%. A unique causative viral agent was identified in 46.2% samples and the coinfection rate was 43.7%. For hBoV, 98.3% of all positive samples were from patients with mixed infections. Similarly, 84.8% of all hMPV-positive results were also observed in mixed infections. Both hBoV and hMPV usually appeared with RSV. In summary, this is the first confirmation that hMPV and hBoV circulate in PA; this provides evidence of frequent involvement of both viruses in children with clinical signs of acute viral respiratory tract infection, although they mainly appeared as coinfection agents.
Resumo:
Malaria diagnoses has traditionally been made using thick blood smears, but more sensitive and faster techniques are required to process large numbers of samples in clinical and epidemiological studies and in blood donor screening. Here, we evaluated molecular and serological tools to build a screening platform for pooled samples aimed at reducing both the time and the cost of these diagnoses. Positive and negative samples were analysed in individual and pooled experiments using real-time polymerase chain reaction (PCR), nested PCR and an immunochromatographic test. For the individual tests, 46/49 samples were positive by real-time PCR, 46/49 were positive by nested PCR and 32/46 were positive by immunochromatographic test. For the assays performed using pooled samples, 13/15 samples were positive by real-time PCR and nested PCR and 11/15 were positive by immunochromatographic test. These molecular methods demonstrated sensitivity and specificity for both the individual and pooled samples. Due to the advantages of the real-time PCR, such as the fast processing and the closed system, this method should be indicated as the first choice for use in large-scale diagnosis and the nested PCR should be used for species differentiation. However, additional field isolates should be tested to confirm the results achieved using cultured parasites and the serological test should only be adopted as a complementary method for malaria diagnosis.
Resumo:
A real-time polymerase chain reaction (PCR) assay with fluorescence resonance energy transfer (FRET) hybridisation probes combined with melting curve analysis was developed to detect Schistosoma japonicum in experimentally infected snails and in faecal samples of infected mice. This procedure is based on melting curve analysis of a hybrid between an amplicon from the S. japonicum internal transcribed spacer region 2 sequence, which is a 192-bp S. japonicum-specific sequence, and fluorophore-labelled specific probes. Real-time FRET PCR could detect as little as a single cercaria artificially introduced into a pool of 10 non-infected snails and a single egg inoculated in 100 mg of non-infected mouse faeces. All S. japonicum-infected snails and all faecal samples from infected mice were positive. Non-infected snails, non-infected mouse faeces and genomic DNA from other parasites were negative. This assay is rapid and has potential for epidemiological S. japonicum surveys in snails, intermediate hosts and faecal samples of final hosts.
Resumo:
Mycobacterium tuberculosis is the bacterium that causes tuberculosis (TB), a leading cause of death from infectious disease worldwide. Rapid diagnosis of resistant strains is important for the control of TB. Real-time polymerase chain reaction (RT-PCR) assays may detect all of the mutations that occur in the M. tuberculosis 81-bp core region of the rpoB gene, which is responsible for resistance to rifampin (RIF) and codon 315 of the katG gene and the inhA ribosomal binding site, which are responsible for isoniazid (INH). The goal of this study was to assess the performance of RT-PCR compared to traditional culture-based methods for determining the drug susceptibility of M. tuberculosis. BACTEC TM MGIT TM 960 was used as the gold standard method for phenotypic drug susceptibility testing. Susceptibilities to INH and RIF were also determined by genotyping of katG, inhA and rpoB genes. RT-PCR based on molecular beacons probes was used to detect specific point mutations associated with resistance. The sensitivities of RT-PCR in detecting INH resistance using katG and inhA targets individually were 55% and 25%, respectively and 73% when combined. The sensitivity of the RT-PCR assay in detecting RIF resistance was 99%. The median time to complete the RT-PCR assay was three-four hours. The specificities for tests were both 100%. Our results confirm that RT-PCR can detect INH and RIF resistance in less than four hours with high sensitivity.
Resumo:
Stenotrophomonas maltophilia is a multidrug-resistant nosocomial pathogen that is difficult to identify unequivocally using current methods. Accordingly, because the presence of this microorganism in a patient may directly determine the antimicrobial treatment, conventional polymerase chain reaction (PCR) and real-time PCR assays targeting 23S rRNA were developed for the specific identification of S. maltophilia. The PCR protocol showed high specificity when tested against other species of Stenotrophomonas, non-fermentative Gram-negative bacilli and 100 clinical isolates of S. maltophilia previously identified using the Vitek system.
Resumo:
The polymerase chain reaction (PCR)-based methods for the diagnosis of malaria infection are expected to accurately identify submicroscopic parasite carriers. Although a significant number of PCR protocols have been described, few studies have addressed the performance of PCR amplification in cases of field samples with submicroscopic malaria infection. Here, the reproducibility of two well-established PCR protocols (nested-PCR and real-time PCR for the Plasmodium 18 small subunit rRNA gene) were evaluated in a panel of 34 blood field samples from individuals that are potential reservoirs of malaria infection, but were negative for malaria by optical microscopy. Regardless of the PCR protocol, a large variation between the PCR replicates was observed, leading to alternating positive and negative results in 38% (13 out of 34) of the samples. These findings were quite different from those obtained from the microscopy-positive patients or the unexposed individuals; the diagnosis of these individuals could be confirmed based on the high reproducibility and specificity of the PCR-based protocols. The limitation of PCR amplification was restricted to the field samples with very low levels of parasitaemia because titrations of the DNA templates were able to detect < 3 parasites/µL in the blood. In conclusion, conventional PCR protocols require careful interpretation in cases of submicroscopic malaria infection, as inconsistent and false-negative results can occur.
Resumo:
Background: Both brucellosis and tuberculosis are chronic-debilitating systemic granulomatous diseases with a high incidence in many countries in Africa, Central and South America, the Middle East and the Indian subcontinent. Certain focal complications of brucellosis and extrapulmonary tuberculosis are very difficult to differentiate clinically, biologically and radiologically. As the conventional microbiological methods for the diagnosis of the two diseases have many limitations, as well as being time-consuming, multiplex real time PCR (M RT-PCR) could be a promising and practical approach to hasten the differential diagnosis and improve prognosis. Methodology/Principal Findings: We designed a SYBR Green single-tube multiplex real-time PCR protocol targeting bcsp31 and the IS711 sequence detecting all pathogenic species and biovars of Brucella genus, the IS6110 sequence detecting Mycobacterium genus, and the intergenic region senX3-regX3 specifically detecting Mycobacterium tuberculosis complex. The diagnostic yield of the M RT-PCR with the three pairs of resultant amplicons was then analyzed in 91 clinical samples corresponding to 30 patients with focal complications of brucellosis, 24 patients with extrapulmonary tuberculosis, and 36 patients (Control Group) with different infectious, autoimmune or neoplastic diseases. Thirty-five patients had vertebral osteomyelitis, 21 subacute or chronic meningitis or meningoencephalitis, 13 liver or splenic abscess, eight orchiepididymitis, seven subacute or chronic arthritis, and the remaining seven samples were from different locations. Of the three pairs of amplicons (senX3-regX3+ bcsp3, senX3-regX3+ IS711 and IS6110+ IS711) only senX3-regX3+ IS711 was 100% specific for both the Brucella genus and M. tuberculosis complex. For all the clinical samples studied, the overall sensitivity, specificity, and positive and negative predictive values of the M RT-PCR assay were 89.1%, 100%, 85.7% and 100%, respectively, with an accuracy of 93.4%, (95% CI, 88.3—96.5%). Conclusions/Significance: In this study, a M RT-PCR strategy with species-specific primers based on senX3-regX3+IS711 sequences proved to be a sensitive and specific test, useful for the highly efficient detection of M. tuberculosis and Brucella spp in very different clinical samples. It thus represents an advance in the differential diagnosis between some forms of extrapulmonary tuberculosis and focal complications of brucellosis.