956 resultados para Respiratory Physiologic Phenomena
Resumo:
[ES] Respiration is a key ecological index. For either individuals or communities, it can be use to assess carbon and energy, demand and expenditure as well as carbon flow rates through food webs. When combined with productivity measurements it can establish the level of metabolic balance. When combined with measurements of respiratory capacity, it can indicate physiological state. Here, we report pilot studies the metabolism of the green algae, Ulva rotundata that inhabits intertidal pools of Gran Canaria. As a starting point we used the electron transport system (ETS) to differentiate between different growing conditions in the natural environment. We suspected different levels of stress associated with these conditions and looked for the influence of this stress in the ETS measurements. This technique has been successfully applied to study bacteria, phytoplankton and zooplankton in the ocean, but it has not been used to study sessile marine macroalgae. These neritic and littoral macrophytes have major ecological and industrial importance, yet little is known about their respiratory physiology. Such knowledge would strengthen our understanding of the resources of the coastal ocean and facilitate its development and best use. Here, we modified the ETS methodology for Ulva rotundata. With this modified ETS assay we investigated the capacity of Ulva to resist anoxia. We measured respiration with optodes (Fibox 4, Presens) in the dark to the point of oxygen exhaustion and through 24 h of anoxia. Then we exposed the Ulva to light and followed the oxygen increase due to photosynthesis. We discuss here the capacity of Ulva to survive during anoxia.
Resumo:
Trabajo realizado por: Maldonado, F.; Packard, T.; Gómez, M.; Santana Rodríguez, J. J
Resumo:
The cardiovascular regulation undergoes wide changes in the different states of sleepwake cycle. In particular, the relationship between spontaneous fluctuations in heart period and arterial pressure clearly shows differences between the two sleep states. In non rapid-eye-movement sleep, heart rhythm is under prevalent baroreflex control, whereas in rapid-eye-movement sleep central autonomic commands prevail (Zoccoli et al., 2001). Moreover, during rapid-eye-movement sleep the cardiovascular variables show wide fluctuations around their mean value. In particular, during rapid-eyemovement sleep, the arterial pressure shows phasic hypertensive events which are superimposed upon the tonic level of arterial pressure. These phasic increases in arterial pressure are accompanied by an increase in heart rate (Sei & Morita, 1996; Silvani et al., 2005). Thus, rapid-eye-movement sleep may represent an “autonomic stress test” for the cardiovascular system, able to unmask pathological patterns of cardiovascular regulation (Verrier et al. 2005), but this hypothesis has never been tested experimentally. The aim of this study was to investigate whether rapid-eye-movement sleep may reveal derangements in central autonomic cardiovascular control in an experimental model of essential hypertension. The study was performed in Spontaneously Hypertensive Rats, which represent the most widely used model of essential hypertension, and allow full control of genetic and environmental confounding factors. In particular, we analyzed the cardiovascular, electroencephalogram, and electromyogram changes associated with phasic hypertensive events during rapid-eyemovement sleep in Spontaneously Hypertensive Rats and in their genetic Wistar Kyoto control strain. Moreover, we studied also a group of Spontaneously Hypertensive Rats made phenotypically normotensive by means of a chronic treatment with an angiotensin converting enzyme inhibitor, the Enalapril maleate, from the age of four weeks to the end of the experiment. All rats were implanted with electrodes for electroencephalographic and electromyographic recordings and with an arterial catheter for arterial pressure measurement. After six days for postoperative recovery, the rats were studied for five days, at an age of ten weeks.The study indicated that the peak of mean arterial pressure increase during the phasic hypertensive events in rapid-eye-movement sleep did not differ significantly between Spontaneously Hypertensive Rats and Wistar Kyoto rats, while on the other hand Spontaneously Hypertensive Rats showed a reduced increase in the frequency of theta rhythm and a reduced tachicardia with respect to Wistar Kyoto rats. The same pattern of changes in mean arterial pressure, heart period, and theta frequency was observed between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate. Spontaneously Hypertensive Rats do not differ from Wistar Kyoto rats only in terms of arterial hypertension, but also due to multiple unknown genetic differences. Spontaneously Hypertensive Rats were developed by selective breeding of Wistar Kyoto rats based only on the level of arterial pressure. However, in this process, multiple genes possibly unrelated to hypertension may have been selected together with the genetic determinants of hypertension (Carley et al., 2000). This study indicated that Spontaneously Hypertensive Rats differ from Wistar Kyoto rats, but not from Spontaneously Hypertensive Rats treated with Enalapril maleate, in terms of arterial pH and theta frequency. This feature may be due to genetic determinants unrelated to hypertension. In sharp contrast, the persistence of differences in the peak of heart period decrease and the peak of theta frequency increase during phasic hypertensive events between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate demonstrates that the observed reduction in central autonomic control of the cardiovascular system in Spontaneously Hypertensive Rats is not an irreversible consequence of inherited genetic determinants. Rather, the comparison between Spontaneously Hypertensive Rats and Spontaneously Hypertensive Rats treated with Enalapril maleate indicates that the observed differences in central autonomic control are the result of the hypertension per se. This work supports the view that the study of cardiovascular regulation in sleep provides fundamental insight on the pathophysiology of hypertension, and may thus contribute to the understanding of this disease, which is a major health problem in European countries (Wolf-Maier et al., 2003) with its burden of cardiac, vascular, and renal complications.
Resumo:
Programa de doctorado en Oceanografía. La fecha de publicación es la fecha de lectura
Resumo:
[EN]Due to the increasing atmospheric CO2, several on-going research programs, including the German-led KOSMOS GC14 experiment, are evaluating the impact of acidification on marine organisms, intent to predict their future. In the KOSMOS GC14 mesocosm experiment we assessed the effect of different CO2 concentrations on metabolism in microplankton (0.7-50µm size) and in biogenic particles harvested by sediment traps.
Resumo:
[ES]La presente tesis, se centra en el estudio del Sistema de Transporte de Electrones (ETS) en organismos del plancton marino, los factores que lo influencian la interpretación de estas mediciones y su detección mediante espectrofotometría y espectrofluorometría, en muestras oceánicas naturales y en cultivos de organismos marinos. Se pudo establecer, la biomasa, la respiración (R) y la respiración potencial (ɸ), en tres transectos en los océanos Índico y Atlántico Norte Sur. A su vez, se determino el estado fisiológico, en tres tamaños del zooplancton, midiendo la relación R/ɸ. Se exploró los efectos de la inanición sobre la R y la variación con respecto a la ɸ en el zooplancton
Resumo:
[EN]The increase in the anthropogenic CO2 released to the atmosphere, induces an increase in the dissolved CO2 in the ocean, causing elevated pCO2 values and a pH decrease. Due to the increasing atmospheric CO2, several on-going research programs are evaluating the impact of acidification on marine organisms, intent to predict their future. In this mesocosm experiment (KOSMOS 14GC), we assessed the effect of different CO2 concentrations on metabolism in microplankton (0.7-50μm size) and in biogenic particles harvested by sediment traps.
Resumo:
The cooperative motion algorithm was applied on the molecular simulation of complex chemical reactions and macromolecular orientation phenomena in confined geometries. First, we investigated the case of equilibrium step-growth polymerization in lamellae, pores and droplets. In such systems, confinement was quantified as the area/volume ratio. Results showed that, as confinement increases, polymerization becomes slower and the average molecular weight (MW) at equilibrium decreases. This is caused by the sterical hindrance imposed by the walls since chain growth reactions in their close vicinity have less realization possibilities. For reactions inside droplets at surfaces, contact angles usually increased after polymerization to compensate conformation restrictions imposed by confinement upon growing chains. In a second investigation, we considered monodisperse and chemically inert chains and focused on the effect of confinement on chain orientation. Simulations of thin polymer films showed that chains are preferably oriented parallel to the surface. Orientation increases as MW increases or as film thickness d decreases, in qualitative agreement with experiments with low MW polystyrene. It is demonstrated that the orientation of simulated chains results from a size effect, being a function of the ratio between chain end-to-end distance and d. This study was complemented by experiments with thin films of pi-conjugated polymers like MEH-PPV. Anisotropic refractive index measurements were used to analyze chain orientation. With increasing MW, orientation is enhanced. However, for MEH-PPV, orientation does not depend on d even at thicknesses much larger than the chain contour length. This contradiction with simulations was discussed by considering additional causes for orientation, for instance the appearance of nematic-like ordering in polymer films. In another investigation, we simulated droplet evaporation at soluble surfaces and reproduced the formation of wells surrounded by ringlike deposits at the surface, as observed experimentally. In our simulations, swollen substrate particles migrate to the border of the droplet to minimize the contact between solvent and vacuum, which costs the most energy. Deposit formation in the beginning of evaporation results in pinning of the droplet. When polymer chains at the substrate surface have strong uniaxial orientation, the resulting pattern is no longer similar to a ring but to a pair of half-moons. In a final stage, as an extension for the model developed for polymerization in nanoreactors, we studied the effect of geometrical confinement on a hypothetical oscillating reaction following the mechanism of the so called periodically forced Brusselator. It was shown that a reaction which is chaotic in the bulk may be driven to periodicity by confinement and vice-versa, opening new perspectives for chaos control.
Resumo:
Diseases due to mutations in mitochondrial DNA probably represent the most common form of metabolic disorders, including cancer, as highlighted in the last years. Approximately 300 mtDNA alterations have been identified as the genetic cause of mitochondrial diseases and one-third of these alterations are located in the coding genes for OXPHOS proteins. Despite progress in identification of their molecular mechanisms, little has been done with regard to the therapy. Recently, a particular gene therapy approach, namely allotopic expression, has been proposed and optimized, although the results obtained are rather controversial. In fact, this approach consists in synthesis of a wild-type version of mutated OXPHOS protein in the cytosolic compartment and in its import into mitochondria, but the available evidence is based only on the partial phenotype rescue and not on the demonstration of effective incorporation of the functional protein into respiratory complexes. In the present study, we took advantage of a previously analyzed cell model bearing the m.3571insC mutation in MTND1 gene for the ND1 subunit of respiratory chain complex I. This frame-shift mutation induces in fact translation of a truncated ND1 protein then degraded, causing complex I disassembly, and for this reason not in competition with that allotopically expressed. We show here that allotopic ND1 protein is correctly imported into mitochondria and incorporated in complex I, promoting its proper assembly and rescue of its function. This result allowed us to further confirm what we have previously demonstrated about the role of complex I in tumorigenesis process. Injection of the allotopic clone in nude mice showed indeed that the rescue of complex I assembly and function increases tumor growth, inducing stabilization of HIF1α, the master regulator of tumoral progression, and consequently its downstream gene expression activation.
Resumo:
Speeding the VO2 kinetics results in a reduction of the O2 deficit. Two factors might determine VO2 kinetics: oxygen delivery to muscle (Tschakovsky and Hughson 1999) and a muscle 'metabolic inertia' (Grassi et al. 1996). Therefore, in study 1 we investigated VO2 kinetics and cardiovascular system adaptations during step exercise transitions in different regions of the moderate domain. In study 2 we investigated muscle oxygenation and cardio-pulmonary adaptations during step exercise tests before, after and over a period of training. Study 1 methods: Seven subjects (26 ± 8 yr; 176 ± 5 cm; 69 ± 6 kg) performed 4 types of step transition from rest (0-50W; 0-100W) or elevate baseline (25-75W; 25-125W). GET and VO2max were assessed before testing. O2 uptake and were measured during testing. Study 2 methods: 10 subjects (25 ± 4 yr; 175 ± 9 cm; 71 ± 12 kg) performed a step transition test (0 to 100 W) before, after and during 4 weeks of endurance training (ET). VO2max and GET were assessed before and after of ET (40 minutes, 3 times a week, 60% O2max). VO2 uptake, Q and deoxyheamoglobin were measured during testing. Study 1 results: VO2 τ and the functional gain were slower in the upper regions of the moderate domain. Q increased more abruptly during rest to work condition. Q τ was faster than VO2 τ for each exercise step. Study 2 results: VO2 τ became faster after ET (25%) and particularly after 1 training session (4%). Q kinetics changed after 4 training sessions nevertheless it was always faster than VO2 τ. An attenuation in ∆[HHb] /∆VO2 was detectible. Conclusion: these investigations suggest that muscle fibres recruitment exerts a influence on the VO2 response within the moderate domain either during different forms of step transition or following ET.
Resumo:
After the development of power electronics converters, the number of transformers subjected to non-sinusoidal stresses (including DC) has increased in applications such as HVDC links and traction (electric train power cars). The effects of non-sinusoidal voltages on transformer insulation have been investigated by many researchers, but still now, there are some issues that must be understood. Some of those issues are tackled in this Thesis, studying PD phenomena behavior in Kraft paper, pressboard and mineral oil at different voltage conditions like AC, DC, AC+DC, notched AC and square waveforms. From the point of view of converter transformers, it was found that the combined effect of AC and DC voltages produces higher stresses in the pressboard that those that are present under pure DC voltages. The electrical conductivity of the dielectric systems in DC and AC+DC conditions has demonstrated to be a critical parameter, so, its measurement and analysis was also taken into account during all the experiments. Regarding notched voltages, the RMS reduction caused by notches (depending on firing and overlap angles) seems to increase the PDIV. However, the experimental results show that once PD activity has incepted, the notches increase PD repetition rate and magnitude, producing a higher degradation rate of paper. On the other hand, the reduction of mineral oil stocks, their relatively low flash point as well as environmental issues, are factors that are pushing towards the use of esters as transformer insulating fluids. This PhD Thesis also covers the study of two different esters with the scope to validate their use in traction transformers. Mineral oil was used as benchmark. The complete set of dielectric tests performed in the three fluids, show that esters behave better than mineral oil in practically all the investigated conditions, so, their application in traction transformers is possible and encouraged.
Resumo:
Recent advances in the fast growing area of therapeutic/diagnostic proteins and antibodies - novel and highly specific drugs - as well as the progress in the field of functional proteomics regarding the correlation between the aggregation of damaged proteins and (immuno) senescence or aging-related pathologies, underline the need for adequate analytical methods for the detection, separation, characterization and quantification of protein aggregates, regardless of the their origin or formation mechanism. Hollow fiber flow field-flow fractionation (HF5), the miniaturized version of FlowFFF and integral part of the Eclipse DUALTEC FFF separation system, was the focus of this research; this flow-based separation technique proved to be uniquely suited for the hydrodynamic size-based separation of proteins and protein aggregates in a very broad size and molecular weight (MW) range, often present at trace levels. HF5 has shown to be (a) highly selective in terms of protein diffusion coefficients, (b) versatile in terms of bio-compatible carrier solution choice, (c) able to preserve the biophysical properties/molecular conformation of the proteins/protein aggregates and (d) able to discriminate between different types of protein aggregates. Thanks to the miniaturization advantages and the online coupling with highly sensitive detection techniques (UV/Vis, intrinsic fluorescence and multi-angle light scattering), HF5 had very low detection/quantification limits for protein aggregates. Compared to size-exclusion chromatography (SEC), HF5 demonstrated superior selectivity and potential as orthogonal analytical method in the extended characterization assays, often required by therapeutic protein formulations. In addition, the developed HF5 methods have proven to be rapid, highly selective, sensitive and repeatable. HF5 was ideally suitable as first dimension of separation of aging-related protein aggregates from whole cell lysates (proteome pre-fractionation method) and, by HF5-(UV)-MALS online coupling, important biophysical information on the fractionated proteins and protein aggregates was gathered: size (rms radius and hydrodynamic radius), absolute MW and conformation.
Resumo:
The study of the bio-recognition phenomena behind a biological process is nowadays considered a useful tool to deeply understand physiological mechanisms allowing the discovery of novel biological target and the development of new lead candidates. Moreover, understanding this kind of phenomena can be helpful in characterizing absorption, distribution, metabolism, elimination and toxicity properties of a new drug (ADMET parameters). Recent estimations show that about half of all drugs in development fail to make it to the market because of ADMET deficiencies; thus a rapid determination of ADMET parameters in early stages of drug discovery would save money and time, allowing to choose the better compound and to eliminate any losers. The monitoring of drug binding to plasma proteins is becoming essential in the field of drug discovery to characterize the drug distribution in human body. Human serum albumin (HSA) is the most abundant protein in plasma playing a fundamental role in the transport of drugs, metabolites and endogenous factors; so the study of the binding mechanism to HSA has become crucial to the early characterization of the pharmacokinetic profile of new potential leads. Furthermore, most of the distribution experiments carried out in vivo are performed on animals. Hence it is interesting to determine the binding of new compounds to albumins from different species to evaluate the reliability of extrapolating the distribution data obtained in animals to humans. It is clear how the characterization of interactions between proteins and drugs determines a growing need of methodologies to study any specific molecular event. A wide variety of biochemical techniques have been applied to this purpose. High-performance liquid affinity chromatography, circular dichroism and optical biosensor represent three techniques that can be able to elucidate the interaction of a new drug with its target and with others proteins that could interfere with ADMET parameters.