873 resultados para Resinas compostas (Odontologia) - Resistência mecânica
Resumo:
O objetivo deste estudo foi avaliar a influência de diferentes condições de polimerização sobre: microdureza Knoop, resistência ao impacto, grau de conversão e temperatura de transição vítrea (Tg) de uma resina acrílica quimicamente ativada (Jet - Artigos Odontológicos Clássico Ltda.). O material foi polimerizado de acordo com as seguintes condições: grupo 1, as amostras foram polimerizadas em contato com o ar, durante 1h, sob temperatura e pressão ambiente; grupo 2, após a polimerização da resina em contato com o ar, durante 1h, sob temperatura e pressão ambiente, a mesma foi submetida a um ciclo adicional de aquecimento em forno de microondas, durante 3 min, a 500W; grupo 3, as amostras foram polimerizadas em água, sob pressão de 20 psi, em uma temperatura de 50°C, durante 15 minutos. Para o ensaio de microdureza Knoop, foram confeccionados sete corpos-de-prova, para cada um dos três grupos experimentais. O corpo-de-prova consistiu de uma placa de resina acrílica quimicamente ativada, com grampos, simulando aparelhos ortodônticos removíveis. Dos sete corpos-de-prova, de cada grupo, dois também foram utilizados para a determinação do grau de conversão e Tg, através da Calorimetria Exploratória Diferencial (DSC). Para o ensaio de resistência ao impacto, foram confeccionados 12 corpos-de-prova para cada grupo, com dimensões de 64,00x10,00x3,20mm. Os resultados mostraram diferenças entre os grupos, através da ANOVA e do teste de Tukey (p ≤ 0,01), apresentando maiores valores de microdureza para o grupo 3, seguido dos grupos 2 e 1. Para o ensaio de resistência ao impacto, os valores obtidos para as amostras do grupo 3 foram superiores aos demais grupos, não havendo diferença estatística entre os grupos 1 e 2 O grau de conversão e Tg foram avaliados de forma descritiva, apresentando um padrão de comportamento coerente com as demais propriedades, ou seja, o grupo 3 apresentou valores mais altos de grau de conversão e Tg, seguido pelos grupos 2 e 1. Os resultados deste trabalho indicam que o melhor comportamento clínico poderá ser esperado do grupo submetido à polimerização em água a 50°C, sob pressão de 20 psi (grupo 3), seguido do grupo 2 (com ciclo adicional em microondas) e, por fim, pelo grupo 1 (polimerizado ao ar).
Resumo:
O solo residual de gnaisse ocupa uma grande área da cidade de Porto Alegre. Embora exista histórico de instabilidades de estruturas de contenção executadas neste material, o estudo científico de suas propriedades geotécnicas foi iniciado somente a partir da execução de uma obra de solo grampeado, realizada no ano de 2001. O projeto da obra supracitada foi revisado a partir do início das escavações, através de retro-análises de rupturas induzidas, o que conduziu a parâmetros de resistência ao cisalhamento sensivelmente inferiores aos obtidos inicialmente através de ensaios de campo. Os deslocamentos de crista, medidos nesta estrutura, superaram os valores esperados a partir de dados da literatura. O solo residual de gnaisse estudado apresenta forte anisotropia textural, marcada pelos bandamentos herdados da rocha mãe. Estes bandamentos são formados pela intercalação de bandas micáceas e bandas compostas principalmente por partículas de quartzo e feldspato. Foram realizados ensaios triaxiais com medição local de deformações, ensaios de compressão isotrópica e ensaios de compressão confinada para o estudo da resistência ao cisalhamento e da deformabilidade deste solo residual de gnaisse Os ensaios foram realizados para diferentes ângulos entre o bandamento micáceo e a direção da tensão principal maior a. Diferente dos solos residuais de gnaisse estudados em outras partes do Brasil, o solo residual de gnaisse estudado apresenta clara anisotropia de resistência ao cisalhamento e de deformabilidade, devida à estrutura herdada da rocha mãe. Em um comportamento também diferente dos solos supracitados, o solo residual de gnaisse de Porto Alegre, com base nos ensaios realizados nesta dissertação, não apresenta uma superfície de plastificação dada pela sua estrutura. Realizando-se uma interpretação através dos conceitos da Teoria do Estado Crítico, verificou-se que o solo residual de gnaisse apresenta uma NCL para amostras reconstituídas, mas, devido ao seu caráter anisotrópico, não foi possível determinar a CSL do solo residual de gnaisse, nem definir sobre sua unicidade.
Resumo:
O conteúdo da presente dissertação aborda a importância da caracterização dos solos, na medida em que estabilidade dos taludes é um fator que depende fortemente da constituição e do tipo de solo presente nos maciços. A realização deste estudo incide sobre os solos da bacia hidrográfica da ribeira de Santa Luzia. O motivo da escolha da bacia em causa prende-se com o facto de a mesma ser uma das ribeiras que, atualmente se encontra sob observação através do projeto “MonitorizaRibeiras” do LREC. Os ensaios laboratoriais de caracterização físico-mecânica dos solos constituem uma das componentes de maior relevância na engenharia geotécnica. Neste trabalho a caracterização mecânica é feita através de ensaios de corte direto (em caixa de corte), que permitem obter os parâmetros de resistência do solo (ângulo de atrito e coesão). A caraterização física foi efetuada recorrendo a ensaios simples que permitem determinar os índices físicos do solo, mais particularmente: determinação da baridade seca in situ, análises granulométricas, determinação de limites de consistência de Atterberg e do teor em água natural, densidade de partículas sólidas e determinação da quantidade de matéria orgânica. Os parâmetros obtidos permitem depois a realização de uma análise a vários taludes com diferentes inclinações, de modo a verificar que influências tais parâmetros geram na obtenção do Fator de Segurança. Verifica-se que à medida que o teor em água aumenta, essa influência traduz-se na perda de resistência de um solo. Tal análise permitiu determinar quais as zonas da bacia de Santa Luzia que com as características obtidas e nas condições estudadas se encontram em maior perigo de escorregamento. Os sensores de saturação do solo, sendo uma útil ferramenta de monitorização remota foram alvo de pesquisa nesta dissertação. Esta pesquisa foi realizada com propósito de contribuir com informação, que posteriormente auxilie, na implementação destes equipamentos no sistema do projeto “MonitorizaRibeiras”.
Resumo:
Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)
Resumo:
Metal-Ceramic (M/C) Zirconia-stainless steel interfaces have been processed through brazing techniques due to the excellent combination of properties such as high temperature stability, high corrosion resistance and good mechanical properties. However, some M/C interfaces show some defects, like porosity and cracks results in the degradation of the interfaces, leading even to its total rupture. Most of time, those defects are associated with an improper brazing parameters selection to the M/C system. In this work, ZrO2 Y-TZP and ZrO2 Mg - PSZ were joint with the stainless steel grade 304 by brazing using a eutectic silver-copper (Ag28Cu) interlayer alloy with different thermal cycles. Ceramic surfaces were previous mechanically metallized with titanium to improve adhesion of the system. The effect of temperature on the M/C interface was studied. SEM-EDS and 3 point flexural bend test were performed to evaluate morphology, chemical composition and mechanical resistance of the M/C interfaces. Lower thermal cycle temperatures produced better results of mechanical resistance, and more regular/ homogeneous reaction layers between braze alloy and metal-ceramic surfaces. Also was proved the AgCu braze alloy activation in situ by titanium
Resumo:
At present, the material of choice for performing aesthetic dental prosthetic work is in the ceramic. Among them, the ceramic base of stabilized zirconia with 3% yttria (3Y - TZP) stand out for having excellent physical and mechanical properties. During the machining of blocks of zirconia in the laboratory to prepare the various types of prostheses, much of the material is given off in the form of powder, which is subsequently discarded. The waste of this material results in financial loss, reflecting higher final cost treatment for patients, as well as damage to the environment, thanks to the processes involved in the manufacture and disposal of the ceramic. This research, pioneered the recycling of zirconium oxide powder obtained during milling of dental crowns and bridges, we highlight the social and environmental aspects and aims to establish a protocol for the reuse of waste (powder of zirconia Zirkonzahn® system) discarded to obtain a new block of compacted zirconia to maintain the same mechanical and microstructural properties of commercial high-cost imported material. To compare with the commercial material, samples were uniaxially (20 MPa) and isostatically (100 MPa), and its mechanical and microstructural characterization was performed through tests of density, porosity, dilatometry, X-ray diffraction (XRD), hardness, fracture toughness, resistance to fracture electron microscopy (SEM) and analysis of grain size. The results observed in the samples were isostatically pressed similiares those obtained with samples from the commercial material demonstrating the viability of the process
Resumo:
An experimental study has been conducted to investigate the behavior of continuous flight auger (cfa) bored piles and metalic driven H-section piles under lateral loading in cohesionless soils. The piles were tested in two different areas at the same site. Both areas consisted of a 3-m thick compacted superficial fill of pure fine sand, underlain by layers of naturally occurring pure fine-thick sand. Fills are differentiated by the relative densities which were compressed, 45% e 70%, respectively. Each area received one identical pair of cfa piles and two identical pairs of H-piles. A static lateral loading test was performed in each pair of piles. In this work, the pile load test results are reported and interpreted. The horizontal coefficient of subgrade reaction was determined from the results of the loading tests and compared with values determined by correlations based on penetration resistance index of SPT tests (NSPT). p-y formulations describing the static behavior of the piles were applied to the problem under evaluation. Back Analyses were made through theoretical and experimental p-y curves for obtaining input parameters for the analytic models, among which the coefficient of horizontal reaction. The soil pile system horizontal loading at rupture was determined by the theoretical methods and the results were compared with the experimental results, checking its validity
Resumo:
Metal ceramic restorations matches aesthetic and strength, and in your making occurs an interface oxide layer, wetting resulting and atomic and ionic interactions resulting between metal, oxide and porcelain. However, frequent clinical fails occurs in this restoration type, because lost homogeneous deposition oxide layer and lost interface bond. Thus, in this study, thought depositate homogeneous oxide films above Ni-Cr samples surfaces polite previously, at plasma oxide environment. Six samples was oxided at 300 and 400ºC at one hour, and two samples was oxided in a comum chamber at 900ºC, and then were characterized: optical microscopic, electronic microscopic, micro hardness, and X ray difratometry. Colors stripes were observed at six samples plasma oxided and a grey surface those comum oxided, thus like: hardness increase, and several oxides from basic metals (Ni-Cr)
Resumo:
In the present research work, composites were prepared using pine apple leaf fibres (PALF) as reinforcement with unsaturated polyester resin as matrix, incorporating with fire retardant at different compositions. The PALF was obtained from the decortication of pine apple leaves obtained from Ramada 4 from Ielmo Marinho in the State of Rio Grande do Norte. The unsaturated polyester resin and the catalyzer were bought from the local establishment. The fire retardant, aluminium tri-hydroxide - Al(OH)3 was donated by Alcoa Alumínio S.A and was used in the proportions of 20%, 40% and 60% w/w. Initially the fibres were treated with 2% NaOH for 1 hour, to remove any impurities present on the fibre surface, such as wax, fat, pectin and pectate, in order to have a better adsorption of the fibres with the matrix as well as the flame retardant. The fibre mat was prepared in a mat preparator by immersion, developed in the Textile Engineering Laboratory, at the UFRN. The composites (300x300x3 mm) were prepared by compression molding and the samples (150x25x3 mm) for analysis of the properties were cut randomly using a laser cutter. Some of the cut samples were used to measure the smoke emission and fire resistance using UL94 standard. Mechanical tension-extension and flexural properties were carried in CTGás RN and the Laboratório de Metais e Ensaios Mecânicos Engenharia de Materiais UFRN , as well as SEM studies were carried out at Núcleo de Estudos em Petróleo e Gás Natural - UFRN . From the observed results, it was noted that, there was no marked influence of the fire retardant on the mechanical properties. Also in the water absorption test, the quantity of water absorbed was less in the sample with higher concentration of fire retardant. It was also observed that the increase in the proportion of the fire retardant increased the time of burning, may be due to the compactness of the composite due to the presence of fire retardant as a filling material even though it was meant to reduce the rate of inflammability of the composite
Resumo:
Materials denominated technical textiles can be defined as structures designed and developed with function to fulfill specific functional requirements of various industrial sectors as are the cases of the automotive and aerospace industries. In this aspect the technical textiles are distinguished from conventional textile materials, in which the aesthetic and of comfort needs are of primordial importance. Based on these considerations, the subject of this dissertation was established having as its main focus the study of development of textile structures from aramid and glass fibers and acting in order to develop the manufacture of composite materials that combine properties of two different structures, manufactured in an identical operation, where each structure contributes to improving the properties of the resulting composite material. Therefore were created in laboratory scale, textile structures with low weight and different composition: aramid (100%), glass (100%) and aramid /glass (65/35%), in order to use them as a reinforcing element in composite materials with polyester matrix. These composites were tested in tension and its fracture surface, evaluated by MEV. Based on the analysis of mechanical properties of the developed composites, the efficiency of the structures prepared as reinforcing element were testified by reason of that the resistance values of the composites are far superior to the polyester matrix. It was also observed that hybridization in tissue structure was efficient, since the best results obtained were for hybrid composites, where strength to the rupture was similar to the steel 1020, reaching values on the order of 340 MPa
Resumo:
The growing demand in the use of hybrid composite materials makes it essential a better understanding of their behavior face of various design conditions, such as the presence of geometric discontinuities in the cross section of structural elements. This way, the purpose of this dissertation is a study of the mechanical response (strength and stiffness), modes (characteristics) of fracture and Residual Strength of an hybrid polymeric composite with and without a geometric discontinuity in its longitudinal section (with a reduction in the cross section) loaded by uniaxial tension. This geometric discontinuity is characterized by central holes of different diameters. The hybrid composite was fabricated as laminate (plate) and consisting of ortho-tereftalic polyester matrix reinforced by 04 outer layers of Jute fibers bidirectional fabrics and 01 central layer of E-glass bidirectional fabric. The laminate was industrially manufactured (Tecniplas Nordeste Indústria e Comércio Ltda.), obtained by the hand lay-up technique. Initially, a study of the volumetric density of the laminate was made in order to verify its use in lightweight structures. Also were performed comparative studies on the mechanical properties and fracture modes under the conditions of the specimens without the central hole and with the different holes. For evaluating the possible influence of the holes in the structural stability of the laminate, the Residual Strength of the composite was determined for each case of variation in hole diameter. As a complementary study, analyses of the macroscopic final fracture characteristic of the laminates were developed. The presence of the central hole of any sizes, negatively changed the ultimate tensile strength. Regarding the elastic modulus, moreover, the difference found between the specimens was within the range of tests displacement, showing the laminate stability related to the stiffness
Resumo:
With the current growth in consumption of industrialized products and the resulting increase in garbage production, their adequate disposal has become one of the greatest challenges of modern society. The use of industrial solid residues as fillers in composite materials is an idea that emerges aiming at investigating alternatives for reusing these residues, and, at the same time, developing materials with superior properties. In this work, the influence of the addition of sand, diatomite, and industrial residues of polyester and EVA (ethylene vinyl acetate), on the mechanical properties of polymer matrix composites, was studied. The main objective was to evaluate the mechanical properties of the materials with the addition of recycled residue fillers, and compare to those of the pure polyester resin. Composite specimens were fabricated and tested for the evaluation of the flexural properties and Charpy impact resistance. After the mechanical tests, the fracture surface of the specimens was analyzed by scanning electron microscopy (SEM). The results indicate that some of the composites with fillers presented greater Young s modulus than the pure resin; in particular composites made with sand and diatomite, where the increase in modulus was about 168 %. The composites with polyester and EVA presented Young s modulus lower than the resin. Both strength and maximum strain were reduced when fillers were added. The impact resistance was reduced in all composites with fillers when compared to the pure resin, with the exception of the composites with EVA, where an increase of about 6 % was observed. Based on the mechanical tests, microscopy analyses and the compatibility of fillers with the polyester resin, the use of industrial solid residues in composites may be viable, considering that for each type of filler there will be a specific application
Resumo:
Improving the adherence between oilwell metallic casing and cement sheath potentially decrease the number of corrective actions present/y necessary for Northeastern wells submitted to steam injection. In addition to the direct costs involved in the corrective operations, the economic impact of the failure of the primary cementing aIso includes the loss in the production of the well. The adherence between casing and cement is current/y evaluated by a simple shear tests non standardized by the American Petroleum Institute (API). Therefore, the objective of the present is to propose and evaluate a standardized method to assess the adherence of oilwell metallic casing to cement sheath. To that end, a section of a cemented oilwell was simulated and used to test the effect of different parameters on the shear stress of the system. Surface roughness and different cement compositions submitted or not to thermal cycling were evaluated. The results revealed that the test geometry and parameters proposed yielded different values for the shear stress of the system, corresponding to different adherent conditions between metallic casing and cement sheath
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neste trabalho foi realizada a caracterização mecânica e microestrutural de um aço microligado com estrutura multifásica. Foi aplicado tratamento térmico pré-determinado, objetivando a formação de uma microestrutura multifásica no material. Na caracterização microestrutural foram utilizados ataques químicos à base de metabissulfito de sódio e ácido pícrico, enquanto a caracterização mecânica foi realizada através de ensaios de tração. Os resultados demonstram o elevado potencial dos aços multifásicos em aplicações que necessitem de valores superiores de resistência e ductilidade, pois tanto para temperatura isotérmica de 400ºC quanto para 350ºC houve um ganho no limite de resistência à tração ficando em torno de 786MPa e 773MPa respectivamente, representando um aumento de 15,5% e 13,6% com relação ao material fornecido.