830 resultados para Representation of time


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis explores the representation of Swinging London in three examples of 1960s British cinema: Blowup (Michelangelo Antonioni, 1966), Smashing Time (Desmond Davis, 1967) and Performance (Donald Cammell and Nicolas Roeg, 1970). It suggests that the films chronologically signify the evolution, commodification and dissolution of the Swinging London era. The thesis explores how the concept of Swinging London is both critiqued and perpetuated in each film through the use of visual tropes: the reconstruction of London as a cinematic space; the Pop photographer; the dolly; representations of music performance and fashion; the appropriation of signs and symbols associated with the visual culture of Swinging London. Using fashion, music performance, consumerism and cultural symbolism as visual narratives, each film also explores the construction of youth identity through the representation of manufactured and mediated images. Ultimately, these films reinforce Swinging London as a visual economy that circulates media images as commodities within a system of exchange. With this in view, the signs and symbols that comprise the visual culture of Swinging London are as central and significant to the cultural era as their material reality. While they attempt to destabilize prevailing representations of the era through the reproduction and exchange of such symbols, Blowup, Smashing Time, and Performance nevertheless contribute to the nostalgia for Swinging London in larger cultural memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulations of 15 coupled chemistry climate models, for the period 1960–2100, are presented. The models include a detailed stratosphere, as well as including a realistic representation of the tropospheric climate. The simulations assume a consistent set of changing greenhouse gas concentrations, as well as temporally varying chlorofluorocarbon concentrations in accordance with observations for the past and expectations for the future. The ozone results are analyzed using a nonparametric additive statistical model. Comparisons are made with observations for the recent past, and the recovery of ozone, indicated by a return to 1960 and 1980 values, is investigated as a function of latitude. Although chlorine amounts are simulated to return to 1980 values by about 2050, with only weak latitudinal variations, column ozone amounts recover at different rates due to the influence of greenhouse gas changes. In the tropics, simulated peak ozone amounts occur by about 2050 and thereafter total ozone column declines. Consequently, simulated ozone does not recover to values which existed prior to the early 1980s. The results also show a distinct hemispheric asymmetry, with recovery to 1980 values in the Northern Hemisphere extratropics ahead of the chlorine return by about 20 years. In the Southern Hemisphere midlatitudes, ozone is simulated to return to 1980 levels only 10 years ahead of chlorine. In the Antarctic, annually averaged ozone recovers at about the same rate as chlorine in high latitudes and hence does not return to 1960s values until the last decade of the simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the numerical simulation of three-dimensional time-dependent viscoelastic free surface flows using the Upper-Convected Maxwell (UCM) constitutive equation and an algebraic explicit model. This investigation was carried out to develop a simplified approach that can be applied to the extrudate swell problem. The relevant physics of this flow phenomenon is discussed in the paper and an algebraic model to predict the extrudate swell problem is presented. It is based on an explicit algebraic representation of the non-Newtonian extra-stress through a kinematic tensor formed with the scaled dyadic product of the velocity field. The elasticity of the fluid is governed by a single transport equation for a scalar quantity which has dimension of strain rate. Mass and momentum conservations, and the constitutive equation (UCM and algebraic model) were solved by a three-dimensional time-dependent finite difference method. The free surface of the fluid was modeled using a marker-and-cell approach. The algebraic model was validated by comparing the numerical predictions with analytic solutions for pipe flow. In comparison with the classical UCM model, one advantage of this approach is that computational workload is substantially reduced: the UCM model employs six differential equations while the algebraic model uses only one. The results showed stable flows with very large extrudate growths beyond those usually obtained with standard differential viscoelastic models. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Larger body parts are somatotopically represented in the primary motor cortex (M1), while smaller body parts, such as the fingers, have partially overlapping representations. The principles that govern the overlapping organization of M1 remain unclear. We used transcranial magnetic stimulation (TMS) to examine the cortical encoding of thumb movements in M1 of healthy humans. We performed M1 mapping of the probability of inducing a thumb movement in a particular direction and used low intensity TMS to disturb a voluntary thumb movement in the same direction during a reaction time task. With both techniques we found spatially segregated representations of the direction of TMS-induced thumb movements, thumb flexion and extension being best separated. Furthermore, the cortical regions corresponding to activation of a thumb muscle differ, depending on whether the muscle functions as agonist or as antagonist for flexion or extension. In addition, we found in the reaction time experiment that the direction of a movement is processed in M1 before the muscles participating in it are activated. It thus appears that one of the organizing principles for the human corticospinal motor system is based on a spatially segregated representation of movement directions and that the representation of individual somatic structures, such as the hand muscles, overlap.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frequency-transformed EEG resting data has been widely used to describe normal and abnormal brain functional states as function of the spectral power in different frequency bands. This has yielded a series of clinically relevant findings. However, by transforming the EEG into the frequency domain, the initially excellent time resolution of time-domain EEG is lost. The topographic time-frequency decomposition is a novel computerized EEG analysis method that combines previously available techniques from time-domain spatial EEG analysis and time-frequency decomposition of single-channel time series. It yields a new, physiologically and statistically plausible topographic time-frequency representation of human multichannel EEG. The original EEG is accounted by the coefficients of a large set of user defined EEG like time-series, which are optimized for maximal spatial smoothness and minimal norm. These coefficients are then reduced to a small number of model scalp field configurations, which vary in intensity as a function of time and frequency. The result is thus a small number of EEG field configurations, each with a corresponding time-frequency (Wigner) plot. The method has several advantages: It does not assume that the data is composed of orthogonal elements, it does not assume stationarity, it produces topographical maps and it allows to include user-defined, specific EEG elements, such as spike and wave patterns. After a formal introduction of the method, several examples are given, which include artificial data and multichannel EEG during different physiological and pathological conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although several detailed models of molecular processes essential for circadian oscillations have been developed, their complexity makes intuitive understanding of the oscillation mechanism difficult. The goal of the present study was to reduce a previously developed, detailed model to a minimal representation of the transcriptional regulation essential for circadian rhythmicity in Drosophila. The reduced model contains only two differential equations, each with time delays. A negative feedback loop is included, in which PER protein represses per transcription by binding the dCLOCK transcription factor. A positive feedback loop is also included, in which dCLOCK indirectly enhances its own formation. The model simulated circadian oscillations, light entrainment, and a phase-response curve with qualitative similarities to experiment. Time delays were found to be essential for simulation of circadian oscillations with this model. To examine the robustness of the simplified model to fluctuations in molecule numbers, a stochastic variant was constructed. Robust circadian oscillations and entrainment to light pulses were simulated with fewer than 80 molecules of each gene product present on average. Circadian oscillations persisted when the positive feedback loop was removed. Moreover, elimination of positive feedback did not decrease the robustness of oscillations to stochastic fluctuations or to variations in parameter values. Such reduced models can aid understanding of the oscillation mechanisms in Drosophila and in other organisms in which feedback regulation of transcription may play an important role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since no single experimental or modeling technique provides data that allow a description of transport processes in clays and clay minerals at all relevant scales, several complementary approaches have to be combined to understand and explain the interplay between transport relevant phenomena. In this paper molecular dynamics simulations (MD) were used to investigate the mobility of water in the interlayer of montmorillonite (Mt), and to estimate the influence of mineral surfaces and interlayer ions on the water diffusion. Random Walk (RW) simulations based on a simplified representation of pore space in Mt were used to estimate and understand the effect of the arrangement of Mt particles on the meso- to macroscopic diffusivity of water. These theoretical calculations were complemented with quasielastic neutron scattering (QENS) measurements of aqueous diffusion in Mt with two pseudo-layers of water performed at four significantly different energy resolutions (i.e. observation times). The size of the interlayer and the size of Mt particles are two characteristic dimensions which determine the time dependent behavior of water diffusion in Mt. MD simulations show that at very short time scales water dynamics has the characteristic features of an oscillatory motion in the cage formed by neighbors in the first coordination shell. At longer time scales, the interaction of water with the surface determines the water dynamics, and the effect of confinement on the overall water mobility within the interlayer becomes evident. At time scales corresponding to an average water displacement equivalent to the average size of Mt particles, the effects of tortuosity are observed in the meso- to macroscopic pore scale simulations. Consistent with the picture obtained in the simulations, the QENS data can be described using a (local) 3D diffusion at short observation times, whereas at sufficiently long observation times a 2D diffusive motion is clearly observed. The effects of tortuosity measured in macroscopic tracer diffusion experiments are in qualitative agreement with RW simulations. By using experimental data to calibrate molecular and mesoscopic theoretical models, a consistent description of water mobility in clay minerals from the molecular to the macroscopic scale can be achieved. In turn, simulations help in choosing optimal conditions for the experimental measurements and the data interpretation. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seizure freedom in patients suffering from pharmacoresistant epilepsies is still not achieved in 20–30% of all cases. Hence, current therapies need to be improved, based on a more complete understanding of ictogenesis. In this respect, the analysis of functional networks derived from intracranial electroencephalographic (iEEG) data has recently become a standard tool. Functional networks however are purely descriptive models and thus are conceptually unable to predict fundamental features of iEEG time-series, e.g., in the context of therapeutical brain stimulation. In this paper we present some first steps towards overcoming the limitations of functional network analysis, by showing that its results are implied by a simple predictive model of time-sliced iEEG time-series. More specifically, we learn distinct graphical models (so called Chow–Liu (CL) trees) as models for the spatial dependencies between iEEG signals. Bayesian inference is then applied to the CL trees, allowing for an analytic derivation/prediction of functional networks, based on thresholding of the absolute value Pearson correlation coefficient (CC) matrix. Using various measures, the thus obtained networks are then compared to those which were derived in the classical way from the empirical CC-matrix. In the high threshold limit we find (a) an excellent agreement between the two networks and (b) key features of periictal networks as they have previously been reported in the literature. Apart from functional networks, both matrices are also compared element-wise, showing that the CL approach leads to a sparse representation, by setting small correlations to values close to zero while preserving the larger ones. Overall, this paper shows the validity of CL-trees as simple, spatially predictive models for periictal iEEG data. Moreover, we suggest straightforward generalizations of the CL-approach for modeling also the temporal features of iEEG signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. The purpose of this study was to describe the risk factors and demographics of persons with salmonellosis and shigellosis and to investigate both seasonal and spatial variations in the occurrence of these infections in Texas from 2000 to 2004, utilizing time series analyses and the geographic information system digital mapping methods. ^ Methods. Spatial Analysis: MapInfo software was used to map the distribution of age-adjusted rates of reported shigellosis and salmonellosis in Texas from 2000–2004 by zip codes. Census data on above or below poverty level, household income, highest level of educational attainment, race, ethnicity, and urban/rural community status was obtained from the 2000 Decennial Census for each zip code. The zip codes with the upper 10% and lower 10% were compared using t-tests and logistic regression to determine whether there were any potential risk factors. ^ Temporal analysis. Seasonal patterns in the prevalence of infections in Texas from 2000 to 2003 were determined by performing time-series analysis on the numbers of cases of salmonellosis and shigellosis. A linear regression was also performed to assess for trends in the incidence of each disease, along with auto-correlation and multi-component cosinor analysis. ^ Results. Spatial analysis: Analysis by general linear model showed a significant association between infection rates and age, with young children aged less than 5 and those aged 5–9 years having increased risk of infection for both disease conditions. The data demonstrated that those populations with high percentages of people who attained a higher than high school education were less likely to be represented in zip codes with high rates of shigellosis. However, for salmonellosis, logistic regression models indicated that when compared to populations with high percentages of non-high school graduates, having a high school diploma or equivalent increased the odds of having a high rate of infection. ^ Temporal analysis. For shigellosis, multi-component cosinor analyses were used to determine the approximated cosine curve which represented a statistically significant representation of the time series data for all age groups by sex. The shigellosis results show 2 peaks, with a major peak occurring in June and a secondary peak appearing around October. Salmonellosis results showed a single peak and trough in all age groups with the peak occurring in August and the trough occurring in February. ^ Conclusion. The results from this study can be used by public health agencies to determine the timing of public health awareness programs and interventions in order to prevent salmonellosis and shigellosis from occurring. Because young children depend on adults for their meals, it is important to increase the awareness of day-care workers and new parents about modes of transmission and hygienic methods of food preparation and storage. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Infant colic is a common condition that is thought to put infants at risk for Shaken Baby Syndrome, a particularly devastating form of child abuse. However, little research has been done on techniques parents can use to deal with infant colic. This pilot study was conducted to assess the equipment that will be used in a randomized control trial that will compare the results for two different techniques that parents can use to reduce crying in infants with colic. ^ Methods. A total of 11 healthy infants, between one and five months of age, were recruited into this pilot study. All infants had a dosimeter, actiwatch and maternal log placed into the home and a subset of infants (N=3) were also recorded by a video camera. The equipment recorded between 6pm and 6am for at least two and up to five nights. The maternal log and video log were compared with one another to determine if the maternal log provides an accurate representation of the infant's night-time activities (i.e. sleep, awake, crying, feeding). The maternal log was then compared to the dosimeter and actiwatch data to determine if the dosimeter/actiwatch accurately reproduce the maternal log. ^ Results. Data from 10 infants were included in the analyses. The maternal log and video log were in full or partial agreement 90% of the time. When comparing events noted by the mother, the maternal log and dosimeter data were in agreement 84% of the time, and the maternal log and actiwatch data were in agreement 87% of the time. In combination, the dosimeter and/or actiwatch data agreed with the maternal log 90% of the time. ^ Conclusions. Our preliminary analyses of these data suggest the dosimeter and actiwatch will be useful tool for defining infant sleep patterns relative to the maternal log. However further analysis will be required to develop threshold values that can be used to objectively define events in the proposed RCT. Such analyses will need to integrate data from multiple dosimeters and deal with the shifting baselines observed for both the dosimeter and actiwatch.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent scholarship has suggested that nation-states will gradually fade away in favor of regions and super-regions as the main actors within a European Union characterized by strong regional identities. At the same time, recent developments have shown that citizen support for European integration is essential for any future development of the Union. The puzzle inspiring this paper is the finding that the greatest support for the EU increasingly stems from minority nationalist regions seeking to bypass their central states to achieve their policy goals at the EU level. This paper empirically tests this suggestion, while shedding light on the relationship between the quality of representation of regional interests at the EU level and positive citizen attitudes towards the EU. In particular, it finds two explanations for cross-regional variation in the relationship between Euroskepticism and representation: (1) a cultural explanation, embodied by a difference in the nature and quality of representation between regions that are linguistically distinctive and regions that are not; and (2) an institutional explanation, embodied by a difference in the nature and quality of representation between regions from federal and non-federal member states. The paper uses an eclectic methodological approach, first utilizing multivariate regression analysis, estimating logistic and ordinal logit models that help explain variation in Euroskepticism at the regional level. The results are then complemented by the findings of in-depth elite interviews of regional representatives - more specifically the directors of a selection of the many regional information offices present in Brussels. This paper takes the study of Euroskepticism to a new level, as most previous scholarly work has focused on explanations at the individual or at the member state level. At the same time it strengthens the notion of a growing importance of a "Europe of the regions."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In earlier work we proposed the idea of requirements-aware systems that could introspect about the extent to which their goals were being satisfied at runtime. When combined with requirements monitoring and self adaptive capabilities, requirements awareness should help optimize goal satisfaction even in the presence of changing run-time context. In this paper we describe initial progress towards the realization of requirements-aware systems with REAssuRE. REAssuRE focuses on explicit representation of assumptions made at design time. When such assumptions are shown not to hold, REAssuRE can trigger system adaptations to alternative goal realization strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 45K05, 35A05, 35S10, 35S15, 33E12

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dedicated to Professor A.M. Mathai on the occasion of his 75-th birthday. Mathematics Subject Classi¯cation 2010: 26A33, 44A10, 33C60, 35J10.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fibre lasers are light sources that are synonymous with stability. They can give rise to highly coherent continuous-wave radiation, or a stable train of mode locked pulses with well-defined characteristics. However, they can also exhibit an exceedingly diverse range of nonlinear operational regimes spanning a multi-dimensional parameter space. The complex nature of the dynamics poses significant challenges in the theoretical and experimental studies of such systems. Here, we demonstrate how the real-time experimental methodology of spatio-temporal dynamics can be used to unambiguously identify and discern between such highly complex lasing regimes. This two-dimensional representation of laser intensity allows the identification and tracking of individual features embedded in the radiation as they make round-trip circulations inside the cavity. The salient features of this methodology are highlighted by its application to the case of Raman fibre lasers and a partially mode locked ring fibre laser operating in the normal dispersion regime.