929 resultados para Remote Data Acquisition and Storage
Resumo:
Parameters such as tolerance, scale and agility utilized in data sampling for using in Precision Agriculture required an expressive number of researches and development of techniques and instruments for automation. It is highlighted the employment of methodologies in remote sensing used in coupled to a Geographic Information System (GIS), adapted or developed for agricultural use. Aiming this, the application of Agricultural Mobile Robots is a strong tendency, mainly in the European Union, the USA and Japan. In Brazil, researches are necessary for the development of robotics platforms, serving as a basis for semi-autonomous and autonomous navigation systems. The aim of this work is to describe the project of an experimental platform for data acquisition in field for the study of the spatial variability and development of agricultural robotics technologies to operate in agricultural environments. The proposal is based on a systematization of scientific work to choose the design parameters utilized for the construction of the model. The kinematic study of the mechanical structure was made by the virtual prototyping process, based on modeling and simulating of the tension applied in frame, using the.
Resumo:
The aim of this study was to use digital images acquired by cameras attached to a helium balloon to detect variation of the nutritional status in Brachiaria decumbens. The treatments consisted of five doses of nitrogen (0, 50, 100, 150 e 200kg ha-1) with six replications each, evaluated in a completely randomized statistical design. A remote sensing system composed of digital cameras and microcomputers was used for image acquisition, and a helium balloon lifted the cameras to the heights of 15, 20, 25 and 30m. A portable chlorophyll meter and analyses of leaf nitrogen content were used to make comparisons with data obtained by the remote sensing system. Data was acquired in two phases, in different climatic conditions. At the end of each phase, dry matter production was measured. Three vegetation indices were used to evaluate the detection of different nutritional status. The three indices were able to detect the effects of N doses. The indices constructed with the Green spectral band showed to be more efficient.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Most of the applications of airborne laser scanner data to forestry require that the point cloud be normalized, i.e., each point represents height from the ground instead of elevation. To normalize the point cloud, a digital terrain model (DTM), which is derived from the ground returns in the point cloud, is employed. Unfortunately, extracting accurate DTMs from airborne laser scanner data is a challenging task, especially in tropical forests where the canopy is normally very thick (partially closed), leading to a situation in which only a limited number of laser pulses reach the ground. Therefore, robust algorithms for extracting accurate DTMs in low-ground-point-densitysituations are needed in order to realize the full potential of airborne laser scanner data to forestry. The objective of this thesis is to develop algorithms for processing airborne laser scanner data in order to: (1) extract DTMs in demanding forest conditions (complex terrain and low number of ground points) for applications in forestry; (2) estimate canopy base height (CBH) for forest fire behavior modeling; and (3) assess the robustness of LiDAR-based high-resolution biomass estimation models against different field plot designs. Here, the aim is to find out if field plot data gathered by professional foresters can be combined with field plot data gathered by professionally trained community foresters and used in LiDAR-based high-resolution biomass estimation modeling without affecting prediction performance. The question of interest in this case is whether or not the local forest communities can achieve the level technical proficiency required for accurate forest monitoring. The algorithms for extracting DTMs from LiDAR point clouds presented in this thesis address the challenges of extracting DTMs in low-ground-point situations and in complex terrain while the algorithm for CBH estimation addresses the challenge of variations in the distribution of points in the LiDAR point cloud caused by things like variations in tree species and season of data acquisition. These algorithms are adaptive (with respect to point cloud characteristics) and exhibit a high degree of tolerance to variations in the density and distribution of points in the LiDAR point cloud. Results of comparison with existing DTM extraction algorithms showed that DTM extraction algorithms proposed in this thesis performed better with respect to accuracy of estimating tree heights from airborne laser scanner data. On the other hand, the proposed DTM extraction algorithms, being mostly based on trend surface interpolation, can not retain small artifacts in the terrain (e.g., bumps, small hills and depressions). Therefore, the DTMs generated by these algorithms are only suitable for forestry applications where the primary objective is to estimate tree heights from normalized airborne laser scanner data. On the other hand, the algorithm for estimating CBH proposed in this thesis is based on the idea of moving voxel in which gaps (openings in the canopy) which act as fuel breaks are located and their height is estimated. Test results showed a slight improvement in CBH estimation accuracy over existing CBH estimation methods which are based on height percentiles in the airborne laser scanner data. However, being based on the idea of moving voxel, this algorithm has one main advantage over existing CBH estimation methods in the context of forest fire modeling: it has great potential in providing information about vertical fuel continuity. This information can be used to create vertical fuel continuity maps which can provide more realistic information on the risk of crown fires compared to CBH.
Resumo:
Our surrounding landscape is in a constantly dynamic state, but recently the rate of changes and their effects on the environment have considerably increased. In terms of the impact on nature, this development has not been entirely positive, but has rather caused a decline in valuable species, habitats, and general biodiversity. Regardless of recognizing the problem and its high importance, plans and actions of how to stop the detrimental development are largely lacking. This partly originates from a lack of genuine will, but is also due to difficulties in detecting many valuable landscape components and their consequent neglect. To support knowledge extraction, various digital environmental data sources may be of substantial help, but only if all the relevant background factors are known and the data is processed in a suitable way. This dissertation concentrates on detecting ecologically valuable landscape components by using geospatial data sources, and applies this knowledge to support spatial planning and management activities. In other words, the focus is on observing regionally valuable species, habitats, and biotopes with GIS and remote sensing data, using suitable methods for their analysis. Primary emphasis is given to the hemiboreal vegetation zone and the drastic decline in its semi-natural grasslands, which were created by a long trajectory of traditional grazing and management activities. However, the applied perspective is largely methodological, and allows for the application of the obtained results in various contexts. Models based on statistical dependencies and correlations of multiple variables, which are able to extract desired properties from a large mass of initial data, are emphasized in the dissertation. In addition, the papers included combine several data sets from different sources and dates together, with the aim of detecting a wider range of environmental characteristics, as well as pointing out their temporal dynamics. The results of the dissertation emphasise the multidimensionality and dynamics of landscapes, which need to be understood in order to be able to recognise their ecologically valuable components. This not only requires knowledge about the emergence of these components and an understanding of the used data, but also the need to focus the observations on minute details that are able to indicate the existence of fragmented and partly overlapping landscape targets. In addition, this pinpoints the fact that most of the existing classifications are too generalised as such to provide all the required details, but they can be utilized at various steps along a longer processing chain. The dissertation also emphases the importance of landscape history as an important factor, which both creates and preserves ecological values, and which sets an essential standpoint for understanding the present landscape characteristics. The obtained results are significant both in terms of preserving semi-natural grasslands, as well as general methodological development, giving support to science-based framework in order to evaluate ecological values and guide spatial planning.
Resumo:
The Global Ocean Data Assimilation Experiment (GODAE [http:// www.godae.org]) has spanned a decade of rapid technological development. The ever-increasing volume and diversity of oceanographic data produced by in situ instruments, remote-sensing platforms, and computer simulations have driven the development of a number of innovative technologies that are essential for connecting scientists with the data that they need. This paper gives an overview of the technologies that have been developed and applied in the course of GODAE, which now provide users of oceanographic data with the capability to discover, evaluate, visualize, download, and analyze data from all over the world. The key to this capability is the ability to reduce the inherent complexity of oceanographic data by providing a consistent, harmonized view of the various data products. The challenges of data serving have been addressed over the last 10 years through the cooperative skills and energies of many individuals.
Resumo:
Web Services for Remote Portlets (WSRP) is gaining attention among portal developers and vendors to enable easy development, increased richness in functionality, pluggability, and flexibility of deployment. Whilst currently not supporting all WSRP functionalities, open-source portal frameworks could in future use WSRP Consumers to access remote portlets found from a WSRP Producer registry service. This implies that we need a central registry for the remote portlets and a more expressive WSRP Consumer interface to implement the remote portlet functions. This paper reports on an investigation into a new system architecture, which includes a Web Services repository, registry, and client interface. The Web Services repository holds portlets as remote resource producers. A new data structure for expressing remote portlets is found and published by populating a Universal Description, Discovery and Integration (UDDI) registry. A remote portlet publish and search engine for UDDI has also been developed. Finally, a remote portlet client interface was developed as a Web application. The client interface supports remote portlet features, as well as window status and mode functions. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
The P-found protein folding and unfolding simulation repository is designed to allow scientists to perform data mining and other analyses across large, distributed simulation data sets. There are two storage components in P-found: a primary repository of simulation data that is used to populate the second component, and a data warehouse that contains important molecular properties. These properties may be used for data mining studies. Here we demonstrate how grid technologies can support multiple, distributed P-found installations. In particular, we look at two aspects: firstly, how grid data management technologies can be used to access the distributed data warehouses; and secondly, how the grid can be used to transfer analysis programs to the primary repositories — this is an important and challenging aspect of P-found, due to the large data volumes involved and the desire of scientists to maintain control of their own data. The grid technologies we are developing with the P-found system will allow new large data sets of protein folding simulations to be accessed and analysed in novel ways, with significant potential for enabling scientific discovery.
Resumo:
Abstract: During the transition from endo-dormancy to eco-dormancy and subsequent growth, the onion bulb undergoes the transition from sink organ to source, to sustain cell division in the meristematic tissue. The mechanisms controlling these processes are not fully understood. Here, a detailed analysis of whole onion bulb physiological, biochemical and transcriptional changes in response to sprouting is reported, enabling a better knowledge of the mechanisms regulating post-harvest onion sprout development. Biochemical and physiological analyses were conducted on different cultivars ('Wellington', 'Sherpa' and 'Red Baron') grown at different sites over 3 years, cured at different temperatures (20, 24 and 28 degrees C) and stored under different regimes (1, 3, 6 and 6 1 degrees C). In addition, the first onion oligonucleotide microarray was developed to determine differential gene expression in onion during curing and storage, so that transcriptional changes could support biochemical and physiological analyses. There were greater transcriptional differences between samples at harvest and before sprouting than between the samples taken before and after sprouting, with some significant changes occurring during the relatively short curing period. These changes are likely to represent the transition from endo-dormancy to sprout suppression, and suggest that endo-dormancy is a relatively short period ending just after curing. Principal component analysis of biochemical and physiological data identified the ratio of monosaccharides (fructose and glucose) to disaccharide (sucrose), along with the concentration of zeatin riboside, as important factors in discriminating between sprouting and pre-sprouting bulbs. These detailed analyses provide novel insights into key regulatory triggers for sprout dormancy release in onion bulbs and provide the potential for the development of biochemical or transcriptional markers for sprout initiation. Evidence presented herein also suggests there is no detrimental effect on bulb storage life and quality caused by curing at 20 degrees C, producing a considerable saving in energy and costs.
Resumo:
The aim of this paper is to examine the acquisition pattern of person and number verb morphology within the generative framework and to compare the results of the analyses with previous research in Greek and other European languages. The study considers previous data on the acquisition of subject-verb agreement, and thereafter, examines the acquisition of person and number morphology in a new dataset of two monolingual Greek-speaking children. The analyses present quantitative data of accuracy of person and number marking, error data, and qualitative analyses addressing the productivity of person and number marking. The results suggest that person and number morphology is used correctly and productively from a very early age in Greek speaking children. The findings provide new insight into early Greek language acquisition and are also relevant for research in early development of languages with rich inflectional morphology.
Resumo:
This paper presents results of the AQL2004 project, which has been develope within the GOFC-GOLD Latin American network of remote sensing and forest fires (RedLatif). The project intended to obtain monthly burned-land maps of the entire region, from Mexico to Patagonia, using MODIS (moderate-resolution imaging spectroradiometer) reflectance data. The project has been organized in three different phases: acquisition and preprocessing of satellite data; discrimination of burned pixels; and validation of results. In the first phase, input data consisting of 32-day composites of MODIS 500-m reflectance data generated by the Global Land Cover Facility (GLCF) of the University of Maryland (College Park, Maryland, U.S.A.) were collected and processed. The discrimination of burned areas was addressed in two steps: searching for "burned core" pixels using postfire spectral indices and multitemporal change detection and mapping of burned scars using contextual techniques. The validation phase was based on visual analysis of Landsat and CBERS (China-Brazil Earth Resources Satellite) images. Validation of the burned-land category showed an agreement ranging from 30% to 60%, depending on the ecosystem and vegetation species present. The total burned area for the entire year was estimated to be 153 215 km2. The most affected countries in relation to their territory were Cuba, Colombia, Bolivia, and Venezuela. Burned areas were found in most land covers; herbaceous vegetation (savannas and grasslands) presented the highest proportions of burned area, while perennial forest had the lowest proportions. The importance of croplands in the total burned area should be taken with reserve, since this cover presented the highest commission errors. The importance of generating systematic products of burned land areas for different ecological processes is emphasized.
Resumo:
Environment monitoring applications using Wireless Sensor Networks (WSNs) have had a lot of attention in recent years. In much of this research tasks like sensor data processing, environment states and events decision making and emergency message sending are done by a remote server. A proposed cross layer protocol for two different applications where, reliability for delivered data, delay and life time of the network need to be considered, has been simulated and the results are presented in this paper. A WSN designed for the proposed applications needs efficient MAC and routing protocols to provide a guarantee for the reliability of the data delivered from source nodes to the sink. A cross layer based on the design given in [1] has been extended and simulated for the proposed applications, with new features, such as routes discovery algorithms added. Simulation results show that the proposed cross layer based protocol can conserve energy for nodes and provide the required performance such as life time of the network, delay and reliability.
Resumo:
Sea surface temperature (SST) data are often provided as gridded products, typically at resolutions of order 0.05 degrees from satellite observations to reduce data volume at the request of data users and facilitate comparison against other products or models. Sampling uncertainty is introduced in gridded products where the full surface area of the ocean within a grid cell cannot be fully observed because of cloud cover. In this paper we parameterise uncertainties in SST as a function of the percentage of clear-sky pixels available and the SST variability in that subsample. This parameterisation is developed from Advanced Along Track Scanning Radiometer (AATSR) data, but is applicable to all gridded L3U SST products at resolutions of 0.05-0.1 degrees, irrespective of instrument and retrieval algorithm, provided that instrument noise propagated into the SST is accounted for. We also calculate the sampling uncertainty of ~0.04 K in Global Area Coverage (GAC) Advanced Very High Resolution Radiometer (AVHRR) products, using related methods.